import subprocess # Installing flash_attn subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) import gradio as gr from PIL import Image from transformers import AutoModelForCausalLM from transformers import AutoProcessor from transformers import TextIteratorStreamer import time from threading import Thread import torch import spaces model_id = "microsoft/Phi-3-vision-128k-instruct" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto") processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model.to("cuda:0") PLACEHOLDER = """

Fitness Coach: Arnold Style

Upload your exercise photo and get short, powerful coaching tips from the best!

""" @spaces.GPU def bot_streaming(message, history): print(f'message is - {message}') print(f'history is - {history}') if message["files"]: if type(message["files"][-1]) == dict: image = message["files"][-1]["path"] else: image = message["files"][-1] else: for hist in history: if type(hist[0]) == tuple: image = hist[0][0] try: if image is None: raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.") except NameError: raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.") conversation = [] flag = False for user, assistant in history: if assistant is None: flag = True conversation.extend([{"role": "user", "content": ""}]) continue if flag == True: conversation[0]['content'] = f"<|image_1|>\n{user}" conversation.extend([{"role": "assistant", "content": assistant}]) flag = False continue conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) if len(history) == 0: conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"}) else: conversation.append({"role": "user", "content": message['text']}) print(f"prompt is -\n{conversation}") prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) image = Image.open(image) inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces': False,}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=280, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot = gr.Chatbot(scale=1, placeholder=PLACEHOLDER) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) with gr.Blocks(fill_height=True,) as demo: gr.ChatInterface( fn=bot_streaming, title="Fitness Coach: Arnold Style", examples=[ {"text": "Identify and provide coaching cues for this exercise.", "files": ["./squat.jpg"]}, {"text": "What improvements can I make?", "files": ["./pushup.jpg"]}, {"text": "How is my form?", "files": ["./plank.jpg"]}, {"text": "Give me some tips to improve my deadlift.", "files": ["./deadlift.jpg"]} ], description="Upload an image of your exercise, and the fitness coach will identify the exercise and provide concise coaching cues to improve your form. Responses are limited to 280 characters.", stop_btn="Stop Generation", multimodal=True, textbox=chat_input, chatbot=chatbot, cache_examples=False, examples_per_page=3 ) demo.queue() demo.launch(debug=True, quiet=True)