simonraj's picture
Update app.py
21259cf verified
raw
history blame
8.37 kB
import subprocess
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
check=True # This will raise an exception if the command fails
)
# Rest of your app.py code
import gradio as gr
import asyncio
import os
import thinkingframes
import soundfile as sf
import numpy as np
import logging
from transformers import pipeline
from dotenv import load_dotenv
from policy import user_acceptance_policy
from styles import theme
from thinkingframes import generate_prompt, strategy_options, questions
from utils import get_image_html, collect_student_info
from database_functions import add_user_privacy, add_submission
from tab_teachers_dashboard import create_teachers_dashboard_tab
from config import CLASS_OPTIONS
from concurrent.futures import ThreadPoolExecutor
import spaces
from streaming_stt_nemo import Model
import edge_tts
import tempfile
load_dotenv()
default_lang = "en"
engines = {default_lang: Model(default_lang)}
# For maintaining user session (to keep track of userID)
user_state = gr.State(value="")
@spaces.GPU(duration=120)
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
# Load the Meta-Llama-3-8B model from Hugging Face
llm = pipeline("text-generation", model="models/meta-llama/Meta-Llama-3-8B")
image_path = "picturePerformance.jpg"
img_html = get_image_html(image_path)
executor = ThreadPoolExecutor()
@spaces.GPU(duration=120)
def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level):
current_question_index = questions.index(question_choice)
strategy, explanation = strategy_options[strategy_choice]
conversation = [{
"role": "system",
"content": thinkingframes.generate_system_message(current_question_index, feedback_level)
}, {
"role": "user",
"content": message
}]
feedback = llm(conversation, max_length=1000, num_return_sequences=1)[0]["generated_text"]
questionNo = current_question_index + 1
add_submission(user_id, message, feedback, int(0), "", questionNo)
return feedback
@spaces.GPU(duration=60)
async def generate_audio_feedback(feedback_buffer):
communicate = edge_tts.Communicate(feedback_buffer)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
async def predict(question_choice, strategy_choice, feedback_level, audio):
current_audio_output = None
if audio is None:
yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
return
sample_rate, audio_data = audio
if audio_data is None or len(audio_data) == 0:
yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
return
audio_path = "audio.wav"
if not isinstance(audio_data, np.ndarray):
raise ValueError("audio_data must be a numpy array")
sf.write(audio_path, audio_data, sample_rate)
chat_history = [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcribing your audio, please listen to your oral response while waiting ...")]
yield chat_history, current_audio_output
try:
transcription_future = executor.submit(transcribe, audio_path)
student_response = await asyncio.wrap_future(transcription_future)
if not student_response.strip():
yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription failed. Please try again or seek assistance.")], current_audio_output
return
chat_history.append(("Student", student_response))
yield chat_history, current_audio_output
chat_history.append(("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription complete. Generating feedback. Please continue listening to your oral response while waiting ..."))
yield chat_history, current_audio_output
feedback_future = executor.submit(generate_feedback, int(user_state.value), question_choice, strategy_choice, student_response, feedback_level)
feedback = await asyncio.wrap_future(feedback_future)
chat_history.append(("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", feedback))
yield chat_history, current_audio_output
audio_future = executor.submit(generate_audio_feedback, feedback)
audio_output_path = await asyncio.wrap_future(audio_future)
current_audio_output = (24000, audio_output_path)
yield chat_history, current_audio_output
except Exception as e:
logging.error(f"An error occurred: {str(e)}", exc_info=True)
yield [("Oral Coach ⚡ ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "An error occurred. Please try again or seek assistance.")], current_audio_output
# Modify the toggle_oral_coach_visibility function to call add_user_privacy and store the returned user_id in user_state.value
def toggle_oral_coach_visibility(class_name, index_no, policy_checked):
if not policy_checked:
return "Please agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ before submitting.", gr.update(visible=False)
user_id, message = add_user_privacy(class_name, index_no)
if "Error" in message:
return message, gr.update(visible=False)
user_state.value = user_id
return message, gr.update(visible=True)
with gr.Blocks(title="Oral Coach powered by Hugging Face", theme=theme) as app:
with gr.Tab("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡"):
gr.Markdown("## Student Information")
class_name = gr.Dropdown(label="Class", choices=CLASS_OPTIONS)
index_no = gr.Dropdown(label="Index No", choices=[f"{i:02}" for i in range(1, 46)])
policy_text = gr.Markdown(user_acceptance_policy)
policy_checkbox = gr.Checkbox(label="I have read and agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", value=False)
submit_info_btn = gr.Button("Submit Info")
info_output = gr.Text()
with gr.Column(visible=False) as oral_coach_content:
gr.Markdown("## Powered by Hugging Face")
gr.Markdown(img_html)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Choose a Question")
question_choice = gr.Radio(thinkingframes.questions, label="Questions", value=thinkingframes.questions[0])
gr.Markdown("### Step 2: Choose a Thinking Frame")
strategy_choice = gr.Dropdown(list(strategy_options.keys()), label="Thinking Frame", value=list(strategy_options.keys())[0])
gr.Markdown("### Step 3: Choose Feedback Level")
feedback_level = gr.Radio(["Brief Feedback", "Moderate Feedback", "Comprehensive Feedback"], label="Feedback Level")
feedback_level.value = "Brief Feedback"
with gr.Column(scale=1):
gr.Markdown("### Step 4: Record Your Answer")
audio_input = gr.Audio(type="numpy", sources=["microphone"], label="Record")
submit_answer_btn = gr.Button("Submit Oral Response")
gr.Markdown("### Step 5: Review your personalised feedback")
feedback_output = gr.Chatbot(label="Feedback", scale=4, height=700, show_label=True)
audio_output = gr.Audio(type="numpy", label="Audio Playback", format="wav", autoplay="True")
submit_answer_btn.click(
predict,
inputs=[question_choice, strategy_choice, feedback_level, audio_input],
outputs=[feedback_output, audio_output]
)
submit_info_btn.click(
toggle_oral_coach_visibility,
inputs=[class_name, index_no, policy_checkbox],
outputs=[info_output, oral_coach_content]
)
create_teachers_dashboard_tab()
app.queue(max_size=20).launch(
debug=True,
server_port=int(os.environ.get("PORT", 10000)),
favicon_path="favicon.ico"
)