Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import thinkingframes | |
import soundfile as sf | |
import numpy as np | |
import logging | |
from dotenv import load_dotenv | |
from policy import user_acceptance_policy | |
from styles import theme | |
from thinkingframes import generate_prompt, strategy_options, questions | |
from utils import get_image_html, collect_student_info | |
from database_functions import add_user_privacy, add_submission | |
from tab_teachers_dashboard import create_teachers_dashboard_tab | |
from config import CLASS_OPTIONS | |
import spaces | |
import edge_tts | |
import tempfile | |
# Load environment variables | |
load_dotenv() | |
# Whisper API settings | |
API_URL = "https://api-inference.huggingface.co/models/whisper-large" | |
headers = {"Authorization": f"Bearer {os.getenv('HF_AUTH_TOKEN')}"} | |
def whisper_query(filename): | |
with open(filename, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL, headers=headers, data=data) | |
return response.json() | |
# For maintaining user session (to keep track of userID) | |
user_state = gr.State(value="") | |
# Load the Meta-Llama-3-8B model from Hugging Face | |
llm = gr.load("meta-llama/Meta-Llama-3-8B", src="models") | |
image_path = "picturePerformance.jpg" | |
img_html = get_image_html(image_path) | |
def transcribe(audio_path): | |
response = whisper_query(audio_path) | |
if "text" in response: | |
return response["text"] | |
else: | |
raise ValueError("Transcription failed.") | |
def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level): | |
current_question_index = questions.index(question_choice) | |
strategy, explanation = strategy_options[strategy_choice] | |
conversation = [{ | |
"role": "system", | |
"content": thinkingframes.generate_system_message(current_question_index, feedback_level) | |
}, { | |
"role": "user", | |
"content": message | |
}] | |
feedback = llm(conversation)[0]["generated_text"] | |
questionNo = current_question_index + 1 | |
add_submission(user_id, message, feedback, int(0), "", questionNo) | |
return feedback | |
def generate_audio_feedback(feedback_buffer): | |
communicate = edge_tts.Communicate(feedback_buffer) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
asyncio.run(communicate.save(tmp_path)) | |
return tmp_path | |
def predict(question_choice, strategy_choice, feedback_level, audio): | |
current_audio_output = None | |
if audio is None: | |
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output | |
sample_rate, audio_data = audio | |
if audio_data is None or len(audio_data) == 0: | |
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output | |
audio_path = "audio.wav" | |
if not isinstance(audio_data, np.ndarray): | |
raise ValueError("audio_data must be a numpy array") | |
sf.write(audio_path, audio_data, sample_rate) | |
chat_history = [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcribing your audio, please listen to your oral response while waiting ...")] | |
try: | |
student_response = transcribe(audio_path) | |
if not student_response.strip(): | |
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription failed. Please try again or seek assistance.")], current_audio_output | |
chat_history.append(("Student", student_response)) | |
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription complete. Generating feedback. Please continue listening to your oral response while waiting ...")) | |
feedback = generate_feedback(int(user_state.value), question_choice, strategy_choice, student_response, feedback_level) | |
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", feedback)) | |
audio_output_path = generate_audio_feedback(feedback) | |
current_audio_output = (24000, audio_output_path) | |
return chat_history, current_audio_output | |
except Exception as e: | |
logging.error(f"An error occurred: {str(e)}", exc_info=True) | |
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "An error occurred. Please try again or seek assistance.")], current_audio_output | |
def toggle_oral_coach_visibility(class_name, index_no, policy_checked): | |
if not policy_checked: | |
return "Please agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ before submitting.", gr.update(visible=False) | |
user_id, message = add_user_privacy(class_name, index_no) | |
if "Error" in message: | |
return message, gr.update(visible=False) | |
user_state.value = user_id | |
return message, gr.update(visible=True) | |
with gr.Blocks(title="Oral Coach powered by ZeroGPU⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ and Meta AI 🦙 (LLama3)", theme=theme, css="footer {visibility: hidden}textbox{resize:none}") as demo: | |
with gr.Tab("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡"): | |
gr.Markdown("## Student Information") | |
class_name = gr.Dropdown(label="Class", choices=CLASS_OPTIONS) | |
index_no = gr.Dropdown(label="Index No", choices=[f"{i:02}" for i in range(1, 46)]) | |
policy_text = gr.Markdown(user_acceptance_policy) | |
policy_checkbox = gr.Checkbox(label="I have read and agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", value=False) | |
submit_info_btn = gr.Button("Submit Info") | |
info_output = gr.Text() | |
with gr.Column(visible=False) as oral_coach_content: | |
gr.Markdown("## Powered by Hugging Face") | |
gr.Markdown(img_html) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Step 1: Choose a Question") | |
question_choice = gr.Radio(thinkingframes.questions, label="Questions", value=thinkingframes.questions[0]) | |
gr.Markdown("### Step 2: Choose a Thinking Frame") | |
strategy_choice = gr.Dropdown(list(strategy_options.keys()), label="Thinking Frame", value=list(strategy_options.keys())[0]) | |
gr.Markdown("### Step 3: Choose Feedback Level") | |
feedback_level = gr.Radio(["Brief Feedback", "Moderate Feedback", "Comprehensive Feedback"], label="Feedback Level") | |
feedback_level.value = "Brief Feedback" | |
with gr.Column(scale=1): | |
gr.Markdown("### Step 4: Record Your Answer") | |
audio_input = gr.Audio(type="numpy", sources=["microphone"], label="Record") | |
submit_answer_btn = gr.Button("Submit Oral Response") | |
gr.Markdown("### Step 5: Review your personalised feedback") | |
feedback_output = gr.Chatbot(label="Feedback", scale=4, height=700, show_label=True) | |
audio_output = gr.Audio(type="numpy", label="Audio Playback", format="wav", autoplay="True") | |
submit_answer_btn.click( | |
predict, | |
inputs=[question_choice, strategy_choice, feedback_level, audio_input], | |
outputs=[feedback_output, audio_output] | |
) | |
submit_info_btn.click( | |
toggle_oral_coach_visibility, | |
inputs=[class_name, index_no, policy_checkbox], | |
outputs=[info_output, oral_coach_content] | |
) | |
create_teachers_dashboard_tab() | |
demo.queue(max_size=20) | |
demo.launch() | |