simonraj's picture
Update app.py
017ac29 verified
raw
history blame
7.61 kB
import gradio as gr
import os
import thinkingframes
import soundfile as sf
import numpy as np
import logging
from dotenv import load_dotenv
from policy import user_acceptance_policy
from styles import theme
from thinkingframes import generate_prompt, strategy_options, questions
from utils import get_image_html, collect_student_info
from database_functions import add_user_privacy, add_submission
from tab_teachers_dashboard import create_teachers_dashboard_tab
from config import CLASS_OPTIONS
import spaces
import edge_tts
import tempfile
# Load environment variables
load_dotenv()
# Whisper API settings
API_URL = "https://api-inference.huggingface.co/models/whisper-large"
headers = {"Authorization": f"Bearer {os.getenv('HF_AUTH_TOKEN')}"}
def whisper_query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
# For maintaining user session (to keep track of userID)
user_state = gr.State(value="")
# Load the Meta-Llama-3-8B model from Hugging Face
llm = gr.load("meta-llama/Meta-Llama-3-8B", src="models")
image_path = "picturePerformance.jpg"
img_html = get_image_html(image_path)
@spaces.GPU(duration=120)
def transcribe(audio_path):
response = whisper_query(audio_path)
if "text" in response:
return response["text"]
else:
raise ValueError("Transcription failed.")
@spaces.GPU(duration=120)
def generate_feedback(user_id, question_choice, strategy_choice, message, feedback_level):
current_question_index = questions.index(question_choice)
strategy, explanation = strategy_options[strategy_choice]
conversation = [{
"role": "system",
"content": thinkingframes.generate_system_message(current_question_index, feedback_level)
}, {
"role": "user",
"content": message
}]
feedback = llm(conversation)[0]["generated_text"]
questionNo = current_question_index + 1
add_submission(user_id, message, feedback, int(0), "", questionNo)
return feedback
@spaces.GPU(duration=60)
def generate_audio_feedback(feedback_buffer):
communicate = edge_tts.Communicate(feedback_buffer)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
asyncio.run(communicate.save(tmp_path))
return tmp_path
def predict(question_choice, strategy_choice, feedback_level, audio):
current_audio_output = None
if audio is None:
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
sample_rate, audio_data = audio
if audio_data is None or len(audio_data) == 0:
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "No audio data received. Please try again.")], current_audio_output
audio_path = "audio.wav"
if not isinstance(audio_data, np.ndarray):
raise ValueError("audio_data must be a numpy array")
sf.write(audio_path, audio_data, sample_rate)
chat_history = [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcribing your audio, please listen to your oral response while waiting ...")]
try:
student_response = transcribe(audio_path)
if not student_response.strip():
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription failed. Please try again or seek assistance.")], current_audio_output
chat_history.append(("Student", student_response))
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "Transcription complete. Generating feedback. Please continue listening to your oral response while waiting ..."))
feedback = generate_feedback(int(user_state.value), question_choice, strategy_choice, student_response, feedback_level)
chat_history.append(("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", feedback))
audio_output_path = generate_audio_feedback(feedback)
current_audio_output = (24000, audio_output_path)
return chat_history, current_audio_output
except Exception as e:
logging.error(f"An error occurred: {str(e)}", exc_info=True)
return [("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", "An error occurred. Please try again or seek assistance.")], current_audio_output
def toggle_oral_coach_visibility(class_name, index_no, policy_checked):
if not policy_checked:
return "Please agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ before submitting.", gr.update(visible=False)
user_id, message = add_user_privacy(class_name, index_no)
if "Error" in message:
return message, gr.update(visible=False)
user_state.value = user_id
return message, gr.update(visible=True)
with gr.Blocks(title="Oral Coach powered by ZeroGPU⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡ and Meta AI 🦙 (LLama3)", theme=theme, css="footer {visibility: hidden}textbox{resize:none}") as demo:
with gr.Tab("Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡"):
gr.Markdown("## Student Information")
class_name = gr.Dropdown(label="Class", choices=CLASS_OPTIONS)
index_no = gr.Dropdown(label="Index No", choices=[f"{i:02}" for i in range(1, 46)])
policy_text = gr.Markdown(user_acceptance_policy)
policy_checkbox = gr.Checkbox(label="I have read and agree to the Things to Note When using the Oral Coach ⚡ϞϞ(๑⚈ ․̫ ⚈๑)∩ ⚡", value=False)
submit_info_btn = gr.Button("Submit Info")
info_output = gr.Text()
with gr.Column(visible=False) as oral_coach_content:
gr.Markdown("## Powered by Hugging Face")
gr.Markdown(img_html)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Choose a Question")
question_choice = gr.Radio(thinkingframes.questions, label="Questions", value=thinkingframes.questions[0])
gr.Markdown("### Step 2: Choose a Thinking Frame")
strategy_choice = gr.Dropdown(list(strategy_options.keys()), label="Thinking Frame", value=list(strategy_options.keys())[0])
gr.Markdown("### Step 3: Choose Feedback Level")
feedback_level = gr.Radio(["Brief Feedback", "Moderate Feedback", "Comprehensive Feedback"], label="Feedback Level")
feedback_level.value = "Brief Feedback"
with gr.Column(scale=1):
gr.Markdown("### Step 4: Record Your Answer")
audio_input = gr.Audio(type="numpy", sources=["microphone"], label="Record")
submit_answer_btn = gr.Button("Submit Oral Response")
gr.Markdown("### Step 5: Review your personalised feedback")
feedback_output = gr.Chatbot(label="Feedback", scale=4, height=700, show_label=True)
audio_output = gr.Audio(type="numpy", label="Audio Playback", format="wav", autoplay="True")
submit_answer_btn.click(
predict,
inputs=[question_choice, strategy_choice, feedback_level, audio_input],
outputs=[feedback_output, audio_output]
)
submit_info_btn.click(
toggle_oral_coach_visibility,
inputs=[class_name, index_no, policy_checkbox],
outputs=[info_output, oral_coach_content]
)
create_teachers_dashboard_tab()
demo.queue(max_size=20)
demo.launch()