Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,999 Bytes
aff05a7 9c3bb28 aff05a7 9c3bb28 807597e aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 aff05a7 9c3bb28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 |
import gradio as gr
import pandas as pd
import os
# # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
# if os.environ.get("SPACES_ZERO_GPU") is not None:
# import spaces
# else:
# class spaces:
# @staticmethod
# def GPU(func):
# def wrapper(*args, **kwargs):
# return func(*args, **kwargs)
# return wrapper
import sys
from qatch.connectors.sqlite_connector import SqliteConnector
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
#from predictor.orchestrator_predictor import OrchestratorPredictor
import utils_get_db_tables_info
import utilities as us
import time
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
# @spaces.GPU
# def model_prediction():
# pass
with open('style.css', 'r') as file:
css = file.read()
# DataFrame di default
df_default = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago']
})
models_path = "models.csv"
# Variabile globale per tenere traccia dei dati correnti
df_current = df_default.copy()
input_data = {
'input_method': "",
'data_path': "",
'db_name': "",
'data': {
'data_frames': {}, # dictionary of dataframes
'db': None # SQLITE3 database object
},
'models': []
}
def load_data(file, path, use_default):
"""Carica i dati da un file, un percorso o usa il DataFrame di default."""
global df_current
if use_default:
input_data["input_method"] = 'default'
input_data["data_path"] = os.path.join(".", "data", "data_interface", "mytable.sqlite")
input_data["db_name"] = os.path.splitext(os.path.basename(input_data["data_path"]))[0]
input_data["data"]['data_frames'] = {'MyTable': df_current}
if( input_data["data"]['data_frames']):
table2primary_key = {}
for table_name, df in input_data["data"]['data_frames'].items():
# Assign primary keys for each table
table2primary_key[table_name] = 'id'
input_data["data"]["db"] = SqliteConnector(
relative_db_path=input_data["data_path"],
db_name=input_data["db_name"],
tables= input_data["data"]['data_frames'],
table2primary_key=table2primary_key
)
df_current = df_default.copy() # Ripristina i dati di default
return input_data["data"]['data_frames']
selected_inputs = sum([file is not None, bool(path), use_default])
if selected_inputs > 1:
return 'Errore: Selezionare solo un metodo di input alla volta.'
if file is not None:
try:
input_data["input_method"] = 'uploaded_file'
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0]
input_data["data_path"] = os.path.join(".", "data", "data_interface",f"{input_data['db_name']}.sqlite")
input_data["data"] = us.load_data(file, input_data["db_name"])
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
if( input_data["data"]['data_frames']):
table2primary_key = {}
for table_name, df in input_data["data"]['data_frames'].items():
# Assign primary keys for each table
table2primary_key[table_name] = 'id'
input_data["data"]["db"] = SqliteConnector(
relative_db_path=input_data["data_path"],
db_name=input_data["db_name"],
tables= input_data["data"]['data_frames'],
table2primary_key=table2primary_key
)
return input_data["data"]['data_frames']
except Exception as e:
return f'Errore nel caricamento del file: {e}'
"""
if path:
if not os.path.exists(path):
return 'Errore: Il percorso specificato non esiste.'
try:
input_data["input_method"] = 'uploaded_file'
input_data["data_path"] = path
input_data["db_name"] = os.path.splitext(os.path.basename(path))[0]
input_data["data"] = us.load_data(input_data["data_path"], input_data["db_name"])
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
return input_data["data"]['data_frames']
except Exception as e:
return f'Errore nel caricamento del file dal percorso: {e}'
"""
return input_data["data"]['data_frames']
def preview_default(use_default):
"""Mostra il DataFrame di default se il checkbox Γ¨ selezionato."""
if use_default:
return df_default # Mostra il DataFrame di default
return df_current # Mostra il DataFrame corrente, che potrebbe essere stato modificato
def update_df(new_df):
"""Aggiorna il DataFrame corrente."""
global df_current # Usa la variabile globale per aggiornarla
df_current = new_df
return df_current
def open_accordion(target):
# Apre uno e chiude l'altro
if target == "reset":
df_current = df_default.copy()
input_data['input_method'] = ""
input_data['data_path'] = ""
input_data['db_name'] = ""
input_data['data']['data_frames'] = {}
input_data['data']['db'] = None
input_data['models'] = []
return gr.update(open=True), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(value=False), gr.update(value=None)
elif target == "model_selection":
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False)
# Interfaccia Gradio
with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
with gr.Row():
gr.Column(scale=1)
gr.Image(
value="https://github.com/CristianDegni01/Automatic-LLM-Benchmark-Analysis-for-Text2SQL-GRADIO/blob/master/models_logo/QATCH.png?raw=true",
show_label=False,
container=False,
height=200, # in pixel
width=400
)
gr.Column(scale=1)
data_state = gr.State(None) # Memorizza i dati caricati
upload_acc = gr.Accordion("Upload your data section", open=True, visible=True)
select_table_acc = gr.Accordion("Select tables", open=False, visible=False)
select_model_acc = gr.Accordion("Select models", open=False, visible=False)
qatch_acc = gr.Accordion("QATCH execution", open=False, visible=False)
metrics_acc = gr.Accordion("Metrics", open=False, visible=False)
#metrics_acc = gr.Accordion("Metrics", open=False, visible=False, render=False)
#################################
# DATABASE INSERTION #
#################################
with upload_acc:
gr.Markdown("## Data Upload")
file_input = gr.File(label="Drag and drop a file", file_types=[".csv", ".xlsx", ".sqlite"])
with gr.Row():
default_checkbox = gr.Checkbox(label="Use default DataFrame")
preview_output = gr.DataFrame(interactive=True, visible=True, value=df_default)
submit_button = gr.Button("Load Data", interactive=False) # Disabled by default
output = gr.JSON(visible=False) # Dictionary output
# Function to enable the button if there is data to load
def enable_submit(file, use_default):
return gr.update(interactive=bool(file or use_default))
# Function to uncheck the checkbox if a file is uploaded
def deselect_default(file):
if file:
return gr.update(value=False)
return gr.update()
# Enable the button when inputs are provided
file_input.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
default_checkbox.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
# Show preview of the default DataFrame when checkbox is selected
default_checkbox.change(fn=preview_default, inputs=[default_checkbox], outputs=[preview_output])
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output])
# Uncheck the checkbox when a file is uploaded
file_input.change(fn=deselect_default, inputs=[file_input], outputs=[default_checkbox])
def handle_output(file, use_default):
"""Handles the output when the 'Load Data' button is pressed."""
result = load_data(file, None, use_default)
if isinstance(result, dict): # If result is a dictionary of DataFrames
if len(result) == 1: # If there's only one table
return (
gr.update(visible=False), # Hide JSON output
result, # Save the data state
gr.update(visible=False), # Hide table selection
result, # Maintain the data state
gr.update(interactive=False), # Disable the submit button
gr.update(visible=True, open=True), # Proceed to select_model_acc
gr.update(visible=True, open=False)
)
else:
return (
gr.update(visible=False),
result,
gr.update(open=True, visible=True),
result,
gr.update(interactive=False),
gr.update(visible=False), # Keep current behavior
gr.update(visible=True, open=True)
)
else:
return (
gr.update(visible=False),
None,
gr.update(open=False, visible=True),
None,
gr.update(interactive=True),
gr.update(visible=False),
gr.update(visible=True, open=True)
)
submit_button.click(
fn=handle_output,
inputs=[file_input, default_checkbox],
outputs=[output, output, select_table_acc, data_state, submit_button, select_model_acc, upload_acc]
)
######################################
# TABLE SELECTION PART #
######################################
with select_table_acc:
table_selector = gr.CheckboxGroup(choices=[], label="Select tables to display", value=[])
table_outputs = [gr.DataFrame(label=f"Table {i+1}", interactive=True, visible=False) for i in range(5)]
selected_table_names = gr.Textbox(label="Selected tables", visible=False, interactive=False)
# Model selection button (initially disabled)
open_model_selection = gr.Button("Choose your models", interactive=False)
def update_table_list(data):
"""Dynamically updates the list of available tables."""
if isinstance(data, dict) and data:
table_names = list(data.keys()) # Return only the table names
return gr.update(choices=table_names, value=[]) # Reset selections
return gr.update(choices=[], value=[])
def show_selected_tables(data, selected_tables):
"""Displays only the tables selected by the user and enables the button."""
updates = []
if isinstance(data, dict) and data:
available_tables = list(data.keys()) # Actually available names
selected_tables = [t for t in selected_tables if t in available_tables] # Filter valid selections
tables = {name: data[name] for name in selected_tables} # Filter the DataFrames
for i, (name, df) in enumerate(tables.items()):
updates.append(gr.update(value=df, label=f"Table: {name}", visible=True))
# If there are fewer than 5 tables, hide the other DataFrames
for _ in range(len(tables), 5):
updates.append(gr.update(visible=False))
else:
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(5)]
# Enable/disable the button based on selections
button_state = bool(selected_tables) # True if at least one table is selected, False otherwise
updates.append(gr.update(interactive=button_state)) # Update button state
return updates
def show_selected_table_names(selected_tables):
"""Displays the names of the selected tables when the button is pressed."""
if selected_tables:
return gr.update(value=", ".join(selected_tables), visible=False)
return gr.update(value="", visible=False)
# Automatically updates the checkbox list when `data_state` changes
data_state.change(fn=update_table_list, inputs=[data_state], outputs=[table_selector])
# Updates the visible tables and the button state based on user selections
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection])
# Shows the list of selected tables when "Choose your models" is clicked
open_model_selection.click(fn=show_selected_table_names, inputs=[table_selector], outputs=[selected_table_names])
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
####################################
# MODEL SELECTION PART #
####################################
with select_model_acc:
gr.Markdown("**Model Selection**")
# Assume that `us.read_models_csv` also returns the image path
model_list_dict = us.read_models_csv(models_path)
model_list = [model["code"] for model in model_list_dict]
model_images = [model["image_path"] for model in model_list_dict]
model_checkboxes = []
rows = []
# Dynamically create checkboxes with images (3 per row)
for i in range(0, len(model_list), 3):
with gr.Row():
cols = []
for j in range(3):
if i + j < len(model_list):
model = model_list[i + j]
image_path = model_images[i + j]
with gr.Column():
gr.Image(image_path, show_label=False)
checkbox = gr.Checkbox(label=model, value=False)
model_checkboxes.append(checkbox)
cols.append(checkbox)
rows.append(cols)
selected_models_output = gr.JSON(visible=False)
# Function to get selected models
def get_selected_models(*model_selections):
selected_models = [model for model, selected in zip(model_list, model_selections) if selected]
input_data['models'] = selected_models
button_state = bool(selected_models) # True if at least one model is selected, False otherwise
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state)
# Submit button (initially disabled)
submit_models_button = gr.Button("Submit Models", interactive=False)
# Link checkboxes to selection events
for checkbox in model_checkboxes:
checkbox.change(
fn=get_selected_models,
inputs=model_checkboxes,
outputs=[selected_models_output, select_model_acc, submit_models_button]
)
submit_models_button.click(
fn=lambda *args: (get_selected_models(*args), gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
inputs=model_checkboxes,
outputs=[selected_models_output, select_model_acc, qatch_acc]
)
def enable_disable(enable):
return (
*[gr.update(interactive=enable) for _ in model_checkboxes],
gr.update(interactive=enable),
gr.update(interactive=enable),
gr.update(interactive=enable),
gr.update(interactive=enable),
gr.update(interactive=enable),
gr.update(interactive=enable),
*[gr.update(interactive=enable) for _ in table_outputs],
gr.update(interactive=enable)
)
reset_data = gr.Button("Back to upload data section")
submit_models_button.click(
fn=enable_disable,
inputs=[gr.State(False)],
outputs=[
*model_checkboxes,
submit_models_button,
preview_output,
submit_button,
file_input,
default_checkbox,
table_selector,
*table_outputs,
open_model_selection
]
)
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
reset_data.click(
fn=enable_disable,
inputs=[gr.State(True)],
outputs=[
*model_checkboxes,
submit_models_button,
preview_output,
submit_button,
file_input,
default_checkbox,
table_selector,
*table_outputs,
open_model_selection
]
)
#############################
# QATCH EXECUTION #
#############################
with qatch_acc:
def change_text(text):
return text
loading_symbols= {1:"π",
2: "π π",
3: "π π π",
4: "π π π π",
5: "π π π π π",
6: "π π π π π π",
7: "π π π π π π π",
8: "π π π π π π π π",
9: "π π π π π π π π π",
10:"π π π π π π π π π π",
}
def generate_loading_text(percent):
num_symbols = (round(percent) % 11) + 1
symbols = loading_symbols.get(num_symbols, "π")
mirrored_symbols = f'<span class="mirrored">{symbols.strip()}</span>'
css_symbols = f'<span class="fish">{symbols.strip()}</span>'
return f"<div class='barcontainer'>{css_symbols} <span class='loading'>Generation {percent}%</span>{mirrored_symbols}</div>"
#return f"{css_symbols}"+f"# Loading {percent}% #"+f"{mirrored_symbols}"
def qatch_flow():
orchestrator_generator = OrchestratorGenerator()
# TODO: add to target_df column target_df["columns_used"], tables selection
# print(input_data['data']['db'])
target_df = orchestrator_generator.generate_dataset(connector=input_data['data']['db'])
schema_text = utils_get_db_tables_info.utils_extract_db_schema_as_string(
db_id = input_data["db_name"],
base_path = input_data["data_path"],
normalize=False,
sql=None
)
# TODO: QUERY PREDICTION
predictions_dict = {model: pd.DataFrame(columns=['id', 'question', 'predicted_sql', 'time', 'query', 'db_path']) for model in model_list}
metrics_conc = pd.DataFrame()
for model in input_data["models"]:
model_image_path = next((m["image_path"] for m in model_list_dict if m["code"] == model), None)
yield gr.Image(model_image_path), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
for index, row in target_df.iterrows():
percent_complete = round(((index+1) / len(target_df)) * 100, 2)
load_text = f"{generate_loading_text(percent_complete)}"
question = row['question']
display_question = f"<div class='loading' style ='font-size: 1.7rem;'>Natural Language: </div> <div class='sqlquery'>{row['question']}</div>"
# yield gr.Textbox(question), gr.Textbox(), *[predictions_dict[model] for model in input_data["models"]], None
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(display_question), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
start_time = time.time()
# Simulate prediction
time.sleep(0.4)
prediction = "Prediction_placeholder"
display_prediction = f"<div class='loading' style ='font-size: 1.7rem;'>Generated SQL: </div><div class='sqlquery'>{prediction}</div>"
# Run real prediction here
# prediction = predictor.run(model, schema_text, question)
end_time = time.time()
# Create a new row as dataframe
new_row = pd.DataFrame([{
'id': index,
'question': question,
'predicted_sql': prediction,
'time': end_time - start_time,
'query': row["query"],
'db_path': input_data["data_path"]
}]).dropna(how="all") # Remove only completely empty rows
# TODO: use a for loop
for col in target_df.columns:
if col not in new_row.columns:
new_row[col] = row[col]
# Update model's prediction dataframe incrementally
if not new_row.empty:
predictions_dict[model] = pd.concat([predictions_dict[model], new_row], ignore_index=True)
# yield gr.Textbox(), gr.Textbox(prediction), *[predictions_dict[model] for model in input_data["models"]], None
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
# END
evaluator = OrchestratorEvaluator()
for model in input_data["models"]:
metrics_df_model = evaluator.evaluate_df(
df=predictions_dict[model],
target_col_name="query",
prediction_col_name="predicted_sql",
db_path_name="db_path"
)
metrics_df_model['model'] = model
metrics_conc = pd.concat([metrics_conc, metrics_df_model], ignore_index=True)
if 'valid_efficiency_score' not in metrics_conc.columns:
metrics_conc['valid_efficiency_score'] = metrics_conc['VES']
yield gr.Image(), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
# Loading Bar
with gr.Row():
# progress = gr.Progress()
variable = gr.Markdown()
# NL -> MODEL -> Generated Query
with gr.Row():
with gr.Column():
with gr.Column():
question_display = gr.Markdown()
with gr.Column():
gr.Markdown("<div class='leftarrow'>‴</div>")
with gr.Column():
model_logo = gr.Image(visible=True, show_label=False)
with gr.Column():
with gr.Column():
prediction_display = gr.Markdown()
with gr.Column():
gr.Markdown("<div class='rightarrow'>‴</div>")
dataframe_per_model = {}
with gr.Tabs() as model_tabs:
tab_dict = {}
for model in model_list:
with gr.TabItem(model, visible=(model in input_data["models"])) as tab:
gr.Markdown(f"**Results for {model}**")
tab_dict[model] = tab
dataframe_per_model[model] = gr.DataFrame()
# download_pred_model = gr.DownloadButton(label="Download Prediction per Model", visible=False)
def change_tab():
return [gr.update(visible=(model in input_data["models"])) for model in model_list]
submit_models_button.click(
change_tab,
inputs=[],
outputs=[tab_dict[model] for model in model_list] # Update TabItem visibility
)
selected_models_display = gr.JSON(label="Final input data", visible=False)
metrics_df = gr.DataFrame(visible=False)
metrics_df_out = gr.DataFrame(visible=False)
submit_models_button.click(
fn=qatch_flow,
inputs=[],
outputs=[model_logo, variable, question_display, prediction_display, metrics_df] + list(dataframe_per_model.values())
)
submit_models_button.click(
fn=lambda: gr.update(value=input_data),
outputs=[selected_models_display]
)
# Works for METRICS
metrics_df.change(fn=change_text, inputs=[metrics_df], outputs=[metrics_df_out])
proceed_to_metrics_button = gr.Button("Proceed to Metrics")
proceed_to_metrics_button.click(
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
outputs=[qatch_acc, metrics_acc]
)
def allow_download(metrics_df_out):
path = os.path.join(".", "data", "data_results", "results.csv")
metrics_df_out.to_csv(path, index=False)
return gr.update(value=path, visible=True)
download_metrics = gr.DownloadButton(label="Download Metrics Evaluation", visible=False)
submit_models_button.click(
fn=lambda: gr.update(visible=False),
outputs=[download_metrics]
)
#TODO WHY?
# download_metrics.click(
# fn=lambda: gr.update(open=True, visible=True),
# outputs=[download_metrics]
# )
metrics_df_out.change(fn=allow_download, inputs=[metrics_df_out], outputs=[download_metrics])
reset_data = gr.Button("Back to upload data section")
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
#WHY NOT WORKING?
reset_data.click(
fn=lambda: gr.update(visible=False),
outputs=[download_metrics]
)
reset_data.click(
fn=enable_disable,
inputs=[gr.State(True)],
outputs=[
*model_checkboxes,
submit_models_button,
preview_output,
submit_button,
file_input,
default_checkbox,
table_selector,
*table_outputs,
open_model_selection
]
)
##########################################
# METRICS VISUALIZATION SECTION #
##########################################
with metrics_acc:
#confirmation_text = gr.Markdown("## Metrics successfully loaded")
data_path = 'test_results.csv'
@gr.render(inputs=metrics_df_out)
def function_metrics(metrics_df_out):
def load_data_csv_es():
return pd.read_csv(data_path)
#return metrics_df_out
def calculate_average_metrics(df, selected_metrics):
df['avg_metric'] = df[selected_metrics].mean(axis=1)
return df
def generate_model_colors():
"""Generates a unique color map for models in the dataset."""
df = load_data_csv_es()
unique_models = df['model'].unique() # Extract unique models
num_models = len(unique_models)
# Use the Plotly color scale (you can change it if needed)
color_palette = pc.qualitative.Plotly # ['#636EFA', '#EF553B', '#00CC96', ...]
# If there are more models than colors, cycle through them
colors = {model: color_palette[i % len(color_palette)] for i, model in enumerate(unique_models)}
return colors
MODEL_COLORS = generate_model_colors()
# BAR CHART FOR AVERAGE METRICS WITH UPDATE FUNCTION
def plot_metric(df, selected_metrics, group_by, selected_models):
df = df[df['model'].isin(selected_models)]
df = calculate_average_metrics(df, selected_metrics)
# Ensure the group_by value is always valid
if group_by not in [["tbl_name", "model"], ["model"]]:
group_by = ["tbl_name", "model"] # Default
avg_metrics = df.groupby(group_by)['avg_metric'].mean().reset_index()
fig = px.bar(
avg_metrics,
x=group_by[0],
y='avg_metric',
color='model',
color_discrete_map=MODEL_COLORS,
barmode='group',
title=f'Average metric per {group_by[0]} π',
labels={group_by[0]: group_by[0].capitalize(), 'avg_metric': 'Average Metric'},
template='plotly_dark'
)
return gr.Plot(fig, visible=True)
def update_plot(selected_metrics, group_by, selected_models):
df = load_data_csv_es()
return plot_metric(df, selected_metrics, group_by, selected_models)
# RADAR CHART FOR AVERAGE METRICS PER MODEL WITH UPDATE FUNCTION
def plot_radar(df, selected_models):
# Filter only selected models
df = df[df['model'].isin(selected_models)]
# Select relevant metrics
selected_metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"]
# Compute average metrics per test_category and model
df = calculate_average_metrics(df, selected_metrics)
avg_metrics = df.groupby(['model', 'test_category'])['avg_metric'].mean().reset_index()
# Check if data is available
if avg_metrics.empty:
print("Error: No data available to compute averages.")
return go.Figure()
fig = go.Figure()
categories = avg_metrics['test_category'].unique()
for model in selected_models:
model_data = avg_metrics[avg_metrics['model'] == model]
# Build a list of values for each category (if a value is missing, set it to 0)
values = [
model_data[model_data['test_category'] == cat]['avg_metric'].values[0]
if cat in model_data['test_category'].values else 0
for cat in categories
]
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
name=model,
line=dict(color=MODEL_COLORS.get(model, "gray"))
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, max(avg_metrics['avg_metric'].max(), 0.5)])), # Set the radar range
title='βοΈ Radar Plot of Metrics per Model (Average per Category) βοΈ ',
template='plotly_dark',
width=700, height=700
)
return fig
def update_radar(selected_models):
df = load_data_csv_es()
return plot_radar(df, selected_models)
# LINE CHART FOR CUMULATIVE TIME WITH UPDATE FUNCTION
def plot_cumulative_flow(df, selected_models):
df = df[df['model'].isin(selected_models)]
fig = go.Figure()
for model in selected_models:
model_df = df[df['model'] == model].copy()
# Calculate cumulative time
model_df['cumulative_time'] = model_df['time'].cumsum()
# Calculate cumulative number of queries over time
model_df['cumulative_queries'] = range(1, len(model_df) + 1)
# Select a color for the model
color = MODEL_COLORS.get(model, "gray") # Assigned model color
fillcolor = color.replace("rgb", "rgba").replace(")", ", 0.2)") # πΉ Makes the area semi-transparent
#color = f"rgba({hash(model) % 256}, {hash(model * 2) % 256}, {hash(model * 3) % 256}, 1)"
fig.add_trace(go.Scatter(
x=model_df['cumulative_time'],
y=model_df['cumulative_queries'],
mode='lines+markers',
name=model,
line=dict(width=2, color=color)
))
# Adds the underlying colored area (same color but transparent)
"""
fig.add_trace(go.Scatter(
x=model_df['cumulative_time'],
y=model_df['cumulative_queries'],
fill='tozeroy',
mode='none',
showlegend=False, # Hides the area in the legend
fillcolor=fillcolor
))
"""
fig.update_layout(
title="Cumulative Query Flow Chart π",
xaxis_title="Cumulative Time (s)",
yaxis_title="Number of Queries Completed",
template='plotly_dark',
legend_title="Models"
)
return fig
def update_query_rate(selected_models):
df = load_data_csv_es()
return plot_cumulative_flow(df, selected_models)
# RANKING FOR THE TOP 3 MODELS WITH UPDATE FUNCTION
def ranking_text(df, selected_models, ranking_type):
#df = load_data_csv_es()
df = df[df['model'].isin(selected_models)]
df['valid_efficiency_score'] = pd.to_numeric(df['valid_efficiency_score'], errors='coerce')
if ranking_type == "valid_efficiency_score":
rank_df = df.groupby('model')['valid_efficiency_score'].mean().reset_index()
#rank_df = df.groupby('model')['valid_efficiency_score'].mean().reset_index()
ascending_order = False # Higher is better
elif ranking_type == "time":
rank_df = df.groupby('model')['time'].sum().reset_index()
rank_df["Ranking Value"] = rank_df["time"].round(2).astype(str) + " s" # Adds "s" for seconds
ascending_order = True # For time, lower is better
elif ranking_type == "metrics":
selected_metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"]
df = calculate_average_metrics(df, selected_metrics)
rank_df = df.groupby('model')['avg_metric'].mean().reset_index()
ascending_order = False # Higher is better
if ranking_type != "time":
rank_df.rename(columns={rank_df.columns[1]: "Ranking Value"}, inplace=True)
rank_df["Ranking Value"] = rank_df["Ranking Value"].round(2) # Round values except for time
# Sort based on the selected criterion
rank_df = rank_df.sort_values(by="Ranking Value", ascending=ascending_order).reset_index(drop=True)
# Select only the top 3 models
rank_df = rank_df.head(3)
# Add medal icons for the top 3
medals = ["π₯", "π₯", "π₯"]
rank_df.insert(0, "Rank", medals[:len(rank_df)])
# Build the formatted ranking string
ranking_str = "## π Model Ranking\n"
for _, row in rank_df.iterrows():
ranking_str += f"<span style='font-size:18px;'>{row['Rank']} {row['model']} ({row['Ranking Value']})</span><br>\n"
return ranking_str
def update_ranking_text(selected_models, ranking_type):
df = load_data_csv_es()
return ranking_text(df, selected_models, ranking_type)
# RANKING FOR THE 3 WORST RESULTS WITH UPDATE FUNCTION
def worst_cases_text(df, selected_models):
df = df[df['model'].isin(selected_models)]
selected_metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"]
df = calculate_average_metrics(df, selected_metrics)
worst_cases_df = df.groupby(['model', 'tbl_name', 'test_category', 'question', 'query', 'predicted_sql'])['avg_metric'].mean().reset_index()
worst_cases_df = worst_cases_df.sort_values(by="avg_metric", ascending=True).reset_index(drop=True)
worst_cases_top_3 = worst_cases_df.head(3)
worst_cases_top_3["avg_metric"] = worst_cases_top_3["avg_metric"].round(2)
worst_str = "## β Top 3 Worst Cases\n"
medals = ["π₯", "π₯", "π₯"]
for i, row in worst_cases_top_3.iterrows():
worst_str += (
f"<span style='font-size:18px;'><b>{medals[i]} {row['model']} - {row['tbl_name']} - {row['test_category']}</b> ({row['avg_metric']})</span> \n"
f"<span style='font-size:16px;'>- <b>Question:</b> {row['question']}</span> \n"
f"<span style='font-size:16px;'>- <b>Original Query:</b> `{row['query']}`</span> \n"
f"<span style='font-size:16px;'>- <b>Predicted SQL:</b> `{row['predicted_sql']}`</span> \n\n"
)
return worst_str
def update_worst_cases_text(selected_models):
df = load_data_csv_es()
return worst_cases_text(df, selected_models)
metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"]
group_options = {
"Table": ["tbl_name", "model"],
"Model": ["model"]
}
df_initial = load_data_csv_es()
models = df_initial['model'].unique().tolist()
#with gr.Blocks(theme=gr.themes.Default(primary_hue='blue')) as demo:
gr.Markdown("""## π Model Performance Analysis π
Select one or more metrics to calculate the average and visualize histograms and radar plots.
""")
# Options selection section
with gr.Row():
metric_multiselect = gr.CheckboxGroup(choices=metrics, label="Select metrics", value=metrics)
model_multiselect = gr.CheckboxGroup(choices=models, label="Select models", value=models)
group_radio = gr.Radio(choices=list(group_options.keys()), label="Select grouping", value="Table")
output_plot = gr.Plot(visible=False)
query_rate_plot = gr.Plot(value=update_query_rate(models))
with gr.Row():
with gr.Column(scale=1):
radar_plot = gr.Plot(value=update_radar(models))
with gr.Column(scale=1):
ranking_type_radio = gr.Radio(
["valid_efficiency_score", "time", "metrics"],
label="Choose ranking criteria",
value="valid_efficiency_score"
)
ranking_text_display = gr.Markdown(value=update_ranking_text(models, "valid_efficiency_score"))
worst_cases_display = gr.Markdown(value=update_worst_cases_text(models))
# Callback functions for updating charts
def on_change(selected_metrics, selected_group, selected_models):
return update_plot(selected_metrics, group_options[selected_group], selected_models)
def on_radar_change(selected_models):
return update_radar(selected_models)
#metrics_df_out.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
proceed_to_metrics_button.click(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
proceed_to_metrics_button.click(update_query_rate, inputs=[model_multiselect], outputs=query_rate_plot)
metric_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
group_radio.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
model_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
model_multiselect.change(update_radar, inputs=model_multiselect, outputs=radar_plot)
model_multiselect.change(update_ranking_text, inputs=[model_multiselect, ranking_type_radio], outputs=ranking_text_display)
ranking_type_radio.change(update_ranking_text, inputs=[model_multiselect, ranking_type_radio], outputs=ranking_text_display)
model_multiselect.change(update_worst_cases_text, inputs=model_multiselect, outputs=worst_cases_display)
model_multiselect.change(update_query_rate, inputs=[model_multiselect], outputs=query_rate_plot)
reset_data = gr.Button("Back to upload data section")
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
reset_data.click(
fn=lambda: gr.update(visible=False),
outputs=[download_metrics]
)
reset_data.click(
fn=lambda: gr.update(visible=False),
outputs=[download_metrics]
)
reset_data.click(
fn=enable_disable,
inputs=[gr.State(True)],
outputs=[
*model_checkboxes,
submit_models_button,
preview_output,
submit_button,
file_input,
default_checkbox,
table_selector,
*table_outputs,
open_model_selection
]
)
interface.launch() |