Spaces:
Running
on
Zero
Running
on
Zero
Css, loading bar and some adjustments
Browse files
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
-
# https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
|
5 |
-
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
6 |
-
|
7 |
-
else:
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
import sys
|
15 |
from qatch.connectors.sqlite_connector import SqliteConnector
|
16 |
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
|
@@ -23,9 +23,9 @@ import plotly.express as px
|
|
23 |
import plotly.graph_objects as go
|
24 |
import plotly.colors as pc
|
25 |
|
26 |
-
@spaces.GPU
|
27 |
-
def model_prediction():
|
28 |
-
|
29 |
|
30 |
with open('style.css', 'r') as file:
|
31 |
css = file.read()
|
@@ -149,9 +149,18 @@ def open_accordion(target):
|
|
149 |
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False)
|
150 |
|
151 |
# Interfaccia Gradio
|
152 |
-
|
153 |
with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
154 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
data_state = gr.State(None) # Memorizza i dati caricati
|
156 |
upload_acc = gr.Accordion("Upload your data section", open=True, visible=True)
|
157 |
select_table_acc = gr.Accordion("Select tables", open=False, visible=False)
|
@@ -163,52 +172,52 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
163 |
|
164 |
|
165 |
#################################
|
166 |
-
#
|
167 |
#################################
|
168 |
with upload_acc:
|
169 |
-
gr.Markdown("##
|
170 |
|
171 |
-
file_input = gr.File(label="
|
172 |
with gr.Row():
|
173 |
-
default_checkbox = gr.Checkbox(label="
|
174 |
preview_output = gr.DataFrame(interactive=True, visible=True, value=df_default)
|
175 |
-
submit_button = gr.Button("
|
176 |
-
output = gr.JSON(visible=False) #
|
177 |
|
178 |
-
#
|
179 |
def enable_submit(file, use_default):
|
180 |
return gr.update(interactive=bool(file or use_default))
|
181 |
|
182 |
-
#
|
183 |
def deselect_default(file):
|
184 |
if file:
|
185 |
return gr.update(value=False)
|
186 |
return gr.update()
|
187 |
|
188 |
-
#
|
189 |
file_input.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
|
190 |
default_checkbox.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
|
191 |
|
192 |
-
#
|
193 |
default_checkbox.change(fn=preview_default, inputs=[default_checkbox], outputs=[preview_output])
|
194 |
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output])
|
195 |
|
196 |
-
#
|
197 |
file_input.change(fn=deselect_default, inputs=[file_input], outputs=[default_checkbox])
|
198 |
|
199 |
def handle_output(file, use_default):
|
200 |
-
"""
|
201 |
result = load_data(file, None, use_default)
|
202 |
|
203 |
-
if isinstance(result, dict): #
|
204 |
-
if len(result) == 1: #
|
205 |
return (
|
206 |
-
gr.update(visible=False), #
|
207 |
-
result, #
|
208 |
-
gr.update(visible=False), #
|
209 |
-
result, #
|
210 |
-
gr.update(interactive=False), #
|
211 |
-
gr.update(visible=True, open=True), #
|
212 |
gr.update(visible=True, open=False)
|
213 |
)
|
214 |
else:
|
@@ -218,7 +227,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
218 |
gr.update(open=True, visible=True),
|
219 |
result,
|
220 |
gr.update(interactive=False),
|
221 |
-
gr.update(visible=False), #
|
222 |
gr.update(visible=True, open=True)
|
223 |
)
|
224 |
else:
|
@@ -239,75 +248,72 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
239 |
)
|
240 |
|
241 |
|
242 |
-
|
243 |
######################################
|
244 |
-
#
|
245 |
######################################
|
246 |
with select_table_acc:
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
selected_table_names = gr.Textbox(label="Tabelle selezionate", visible=False, interactive=False)
|
251 |
|
252 |
-
#
|
253 |
open_model_selection = gr.Button("Choose your models", interactive=False)
|
254 |
|
255 |
def update_table_list(data):
|
256 |
-
"""
|
257 |
if isinstance(data, dict) and data:
|
258 |
-
table_names = list(data.keys()) #
|
259 |
-
return gr.update(choices=table_names, value=[]) # Reset
|
260 |
return gr.update(choices=[], value=[])
|
261 |
|
262 |
def show_selected_tables(data, selected_tables):
|
263 |
-
"""
|
264 |
updates = []
|
265 |
if isinstance(data, dict) and data:
|
266 |
-
available_tables = list(data.keys()) #
|
267 |
-
selected_tables = [t for t in selected_tables if t in available_tables] #
|
268 |
|
269 |
-
tables = {name: data[name] for name in selected_tables} #
|
270 |
|
271 |
for i, (name, df) in enumerate(tables.items()):
|
272 |
-
updates.append(gr.update(value=df, label=f"
|
273 |
|
274 |
-
#
|
275 |
for _ in range(len(tables), 5):
|
276 |
updates.append(gr.update(visible=False))
|
277 |
else:
|
278 |
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(5)]
|
279 |
|
280 |
-
#
|
281 |
-
button_state = bool(selected_tables) # True
|
282 |
-
updates.append(gr.update(interactive=button_state)) #
|
283 |
|
284 |
return updates
|
285 |
|
286 |
def show_selected_table_names(selected_tables):
|
287 |
-
"""
|
288 |
if selected_tables:
|
289 |
return gr.update(value=", ".join(selected_tables), visible=False)
|
290 |
return gr.update(value="", visible=False)
|
291 |
|
292 |
-
#
|
293 |
data_state.change(fn=update_table_list, inputs=[data_state], outputs=[table_selector])
|
294 |
|
295 |
-
#
|
296 |
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection])
|
297 |
|
298 |
-
#
|
299 |
open_model_selection.click(fn=show_selected_table_names, inputs=[table_selector], outputs=[selected_table_names])
|
300 |
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
|
301 |
|
302 |
|
303 |
-
|
304 |
####################################
|
305 |
-
#
|
306 |
####################################
|
307 |
with select_model_acc:
|
308 |
gr.Markdown("**Model Selection**")
|
309 |
|
310 |
-
#
|
311 |
model_list_dict = us.read_models_csv(models_path)
|
312 |
model_list = [model["code"] for model in model_list_dict]
|
313 |
model_images = [model["image_path"] for model in model_list_dict]
|
@@ -315,7 +321,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
315 |
model_checkboxes = []
|
316 |
rows = []
|
317 |
|
318 |
-
#
|
319 |
for i in range(0, len(model_list), 3):
|
320 |
with gr.Row():
|
321 |
cols = []
|
@@ -332,17 +338,17 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
332 |
|
333 |
selected_models_output = gr.JSON(visible=False)
|
334 |
|
335 |
-
#
|
336 |
def get_selected_models(*model_selections):
|
337 |
selected_models = [model for model, selected in zip(model_list, model_selections) if selected]
|
338 |
input_data['models'] = selected_models
|
339 |
-
button_state = bool(selected_models) # True
|
340 |
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state)
|
341 |
|
342 |
-
#
|
343 |
submit_models_button = gr.Button("Submit Models", interactive=False)
|
344 |
|
345 |
-
#
|
346 |
for checkbox in model_checkboxes:
|
347 |
checkbox.change(
|
348 |
fn=get_selected_models,
|
@@ -356,20 +362,87 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
356 |
outputs=[selected_models_output, select_model_acc, qatch_acc]
|
357 |
)
|
358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
reset_data = gr.Button("Back to upload data section")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
|
363 |
-
|
364 |
-
#
|
365 |
-
|
366 |
with qatch_acc:
|
367 |
def change_text(text):
|
368 |
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
def qatch_flow():
|
370 |
orchestrator_generator = OrchestratorGenerator()
|
371 |
-
#TODO add to target_df column target_df["columns_used"], tables selection
|
372 |
-
#print(input_data['data']['db'])
|
373 |
target_df = orchestrator_generator.generate_dataset(connector=input_data['data']['db'])
|
374 |
|
375 |
schema_text = utils_get_db_tables_info.utils_extract_db_schema_as_string(
|
@@ -379,27 +452,35 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
379 |
sql=None
|
380 |
)
|
381 |
|
382 |
-
# TODO QUERY PREDICTION
|
383 |
predictions_dict = {model: pd.DataFrame(columns=['id', 'question', 'predicted_sql', 'time', 'query', 'db_path']) for model in model_list}
|
384 |
metrics_conc = pd.DataFrame()
|
|
|
385 |
for model in input_data["models"]:
|
|
|
|
|
|
|
386 |
for index, row in target_df.iterrows():
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
|
|
|
|
|
|
|
|
392 |
start_time = time.time()
|
393 |
|
394 |
-
#
|
395 |
-
time.sleep(0.
|
396 |
prediction = "Prediction_placeholder"
|
397 |
-
|
398 |
-
#
|
399 |
# prediction = predictor.run(model, schema_text, question)
|
400 |
|
401 |
end_time = time.time()
|
402 |
-
#
|
403 |
new_row = pd.DataFrame([{
|
404 |
'id': index,
|
405 |
'question': question,
|
@@ -407,25 +488,29 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
407 |
'time': end_time - start_time,
|
408 |
'query': row["query"],
|
409 |
'db_path': input_data["data_path"]
|
410 |
-
}]).dropna(how="all") #
|
411 |
-
|
|
|
412 |
for col in target_df.columns:
|
413 |
if col not in new_row.columns:
|
414 |
new_row[col] = row[col]
|
415 |
-
|
|
|
416 |
if not new_row.empty:
|
417 |
predictions_dict[model] = pd.concat([predictions_dict[model], new_row], ignore_index=True)
|
418 |
-
#yield gr.Textbox(), gr.Textbox(prediction), *[predictions_dict[model] for model in input_data["models"]], None
|
419 |
-
yield gr.Markdown(value=load_value), gr.Textbox(), gr.Textbox(prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
|
420 |
|
421 |
-
|
|
|
|
|
|
|
|
|
422 |
evaluator = OrchestratorEvaluator()
|
423 |
for model in input_data["models"]:
|
424 |
metrics_df_model = evaluator.evaluate_df(
|
425 |
df=predictions_dict[model],
|
426 |
-
target_col_name="query",
|
427 |
-
prediction_col_name="predicted_sql",
|
428 |
-
db_path_name=
|
429 |
)
|
430 |
metrics_df_model['model'] = model
|
431 |
metrics_conc = pd.concat([metrics_conc, metrics_df_model], ignore_index=True)
|
@@ -433,75 +518,118 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
433 |
if 'valid_efficiency_score' not in metrics_conc.columns:
|
434 |
metrics_conc['valid_efficiency_score'] = metrics_conc['VES']
|
435 |
|
436 |
-
yield gr.Markdown(), gr.
|
437 |
|
438 |
-
#Loading Bar
|
439 |
with gr.Row():
|
440 |
-
#progress = gr.Progress()
|
441 |
variable = gr.Markdown()
|
442 |
|
443 |
-
#NL -> MODEL -> Generated
|
444 |
with gr.Row():
|
445 |
with gr.Column():
|
446 |
-
|
|
|
|
|
|
|
447 |
with gr.Column():
|
448 |
-
gr.Image()
|
449 |
with gr.Column():
|
450 |
-
|
|
|
|
|
|
|
451 |
|
452 |
dataframe_per_model = {}
|
453 |
|
454 |
with gr.Tabs() as model_tabs:
|
455 |
-
|
456 |
for model in model_list:
|
457 |
-
|
458 |
-
with gr.TabItem(model):
|
459 |
gr.Markdown(f"**Results for {model}**")
|
|
|
460 |
dataframe_per_model[model] = gr.DataFrame()
|
|
|
|
|
|
|
|
|
461 |
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
|
464 |
-
selected_models_display = gr.JSON(label="Modelli selezionati")
|
465 |
metrics_df = gr.DataFrame(visible=False)
|
466 |
-
metrics_df_out= gr.DataFrame(visible=False)
|
467 |
-
|
468 |
submit_models_button.click(
|
469 |
fn=qatch_flow,
|
470 |
inputs=[],
|
471 |
-
outputs=[variable, question_display, prediction_display, metrics_df] + list(dataframe_per_model.values())
|
472 |
)
|
473 |
|
474 |
submit_models_button.click(
|
475 |
fn=lambda: gr.update(value=input_data),
|
476 |
outputs=[selected_models_display]
|
477 |
)
|
478 |
-
#Funziona per METRICS
|
479 |
-
metrics_df.change(fn=change_text, inputs=[metrics_df], outputs=[metrics_df_out])
|
480 |
-
|
481 |
-
# def change_tab(selected_models_output, model_tabs):
|
482 |
-
# for model in model_list:
|
483 |
-
# if model in selected_models_output:
|
484 |
-
# pass#model_tabs[model].visible = True
|
485 |
-
# else:
|
486 |
-
# pass#model_tabs[model].visible = False
|
487 |
-
# return model_tabs
|
488 |
|
489 |
-
#
|
|
|
490 |
|
491 |
proceed_to_metrics_button = gr.Button("Proceed to Metrics")
|
492 |
proceed_to_metrics_button.click(
|
493 |
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
|
494 |
outputs=[qatch_acc, metrics_acc]
|
495 |
)
|
|
|
|
|
|
|
|
|
|
|
496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
reset_data = gr.Button("Back to upload data section")
|
498 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
# METRICS VISUALIZATION SECTION #
|
504 |
-
#######################################
|
505 |
with metrics_acc:
|
506 |
#confirmation_text = gr.Markdown("## Metrics successfully loaded")
|
507 |
|
@@ -556,7 +684,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
556 |
template='plotly_dark'
|
557 |
)
|
558 |
|
559 |
-
return fig
|
560 |
|
561 |
def update_plot(selected_metrics, group_by, selected_models):
|
562 |
df = load_data_csv_es()
|
@@ -768,9 +896,9 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
768 |
|
769 |
metric_multiselect = gr.CheckboxGroup(choices=metrics, label="Select metrics", value=metrics)
|
770 |
model_multiselect = gr.CheckboxGroup(choices=models, label="Select models", value=models)
|
771 |
-
group_radio = gr.Radio(choices=list(group_options.keys()), label="Select grouping", value="
|
772 |
|
773 |
-
output_plot = gr.Plot()
|
774 |
|
775 |
query_rate_plot = gr.Plot(value=update_query_rate(models))
|
776 |
|
@@ -795,6 +923,10 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
795 |
return update_radar(selected_models)
|
796 |
|
797 |
#metrics_df_out.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
|
|
|
|
|
|
|
|
798 |
metric_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
799 |
group_radio.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
800 |
model_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
@@ -807,37 +939,30 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
807 |
reset_data = gr.Button("Back to upload data section")
|
808 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
809 |
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
# State variable to track first load
|
814 |
-
load_trigger = gr.State(value=True)
|
815 |
-
|
816 |
-
# Function to force initial load
|
817 |
-
def force_update(is_first_load):
|
818 |
-
if is_first_load:
|
819 |
-
return (
|
820 |
-
update_plot(metrics, group_options["Model"], models),
|
821 |
-
update_query_rate(models),
|
822 |
-
update_radar(models),
|
823 |
-
update_ranking_text(models, "valid_efficiency_score"),
|
824 |
-
update_worst_cases_text(models),
|
825 |
-
False # Change state to prevent continuous reloads
|
826 |
-
)
|
827 |
-
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), False
|
828 |
-
|
829 |
-
# The invisible button forces chart loading only the first time
|
830 |
-
force_update_button.click(
|
831 |
-
fn=force_update,
|
832 |
-
inputs=[load_trigger],
|
833 |
-
outputs=[output_plot, query_rate_plot, radar_plot, ranking_text_display, worst_cases_display, load_trigger]
|
834 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
835 |
|
836 |
-
|
837 |
-
with gr.Blocks() as demo:
|
838 |
-
demo.load(
|
839 |
-
lambda: force_update(True),
|
840 |
-
outputs=[output_plot, query_rate_plot, radar_plot, ranking_text_display, worst_cases_display, load_trigger]
|
841 |
-
)
|
842 |
-
|
843 |
-
interface.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
+
# # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
|
5 |
+
# if os.environ.get("SPACES_ZERO_GPU") is not None:
|
6 |
+
# import spaces
|
7 |
+
# else:
|
8 |
+
# class spaces:
|
9 |
+
# @staticmethod
|
10 |
+
# def GPU(func):
|
11 |
+
# def wrapper(*args, **kwargs):
|
12 |
+
# return func(*args, **kwargs)
|
13 |
+
# return wrapper
|
14 |
import sys
|
15 |
from qatch.connectors.sqlite_connector import SqliteConnector
|
16 |
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
|
|
|
23 |
import plotly.graph_objects as go
|
24 |
import plotly.colors as pc
|
25 |
|
26 |
+
# @spaces.GPU
|
27 |
+
# def model_prediction():
|
28 |
+
# pass
|
29 |
|
30 |
with open('style.css', 'r') as file:
|
31 |
css = file.read()
|
|
|
149 |
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False)
|
150 |
|
151 |
# Interfaccia Gradio
|
|
|
152 |
with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
153 |
+
with gr.Row():
|
154 |
+
gr.Column(scale=1)
|
155 |
+
gr.Image(
|
156 |
+
value="https://github.com/CristianDegni01/Automatic-LLM-Benchmark-Analysis-for-Text2SQL-GRADIO/blob/master/models_logo/QATCH.png?raw=true",
|
157 |
+
show_label=False,
|
158 |
+
container=False,
|
159 |
+
height=200, # in pixel
|
160 |
+
width=400
|
161 |
+
)
|
162 |
+
gr.Column(scale=1)
|
163 |
+
|
164 |
data_state = gr.State(None) # Memorizza i dati caricati
|
165 |
upload_acc = gr.Accordion("Upload your data section", open=True, visible=True)
|
166 |
select_table_acc = gr.Accordion("Select tables", open=False, visible=False)
|
|
|
172 |
|
173 |
|
174 |
#################################
|
175 |
+
# DATABASE INSERTION #
|
176 |
#################################
|
177 |
with upload_acc:
|
178 |
+
gr.Markdown("## Data Upload")
|
179 |
|
180 |
+
file_input = gr.File(label="Drag and drop a file", file_types=[".csv", ".xlsx", ".sqlite"])
|
181 |
with gr.Row():
|
182 |
+
default_checkbox = gr.Checkbox(label="Use default DataFrame")
|
183 |
preview_output = gr.DataFrame(interactive=True, visible=True, value=df_default)
|
184 |
+
submit_button = gr.Button("Load Data", interactive=False) # Disabled by default
|
185 |
+
output = gr.JSON(visible=False) # Dictionary output
|
186 |
|
187 |
+
# Function to enable the button if there is data to load
|
188 |
def enable_submit(file, use_default):
|
189 |
return gr.update(interactive=bool(file or use_default))
|
190 |
|
191 |
+
# Function to uncheck the checkbox if a file is uploaded
|
192 |
def deselect_default(file):
|
193 |
if file:
|
194 |
return gr.update(value=False)
|
195 |
return gr.update()
|
196 |
|
197 |
+
# Enable the button when inputs are provided
|
198 |
file_input.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
|
199 |
default_checkbox.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
|
200 |
|
201 |
+
# Show preview of the default DataFrame when checkbox is selected
|
202 |
default_checkbox.change(fn=preview_default, inputs=[default_checkbox], outputs=[preview_output])
|
203 |
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output])
|
204 |
|
205 |
+
# Uncheck the checkbox when a file is uploaded
|
206 |
file_input.change(fn=deselect_default, inputs=[file_input], outputs=[default_checkbox])
|
207 |
|
208 |
def handle_output(file, use_default):
|
209 |
+
"""Handles the output when the 'Load Data' button is pressed."""
|
210 |
result = load_data(file, None, use_default)
|
211 |
|
212 |
+
if isinstance(result, dict): # If result is a dictionary of DataFrames
|
213 |
+
if len(result) == 1: # If there's only one table
|
214 |
return (
|
215 |
+
gr.update(visible=False), # Hide JSON output
|
216 |
+
result, # Save the data state
|
217 |
+
gr.update(visible=False), # Hide table selection
|
218 |
+
result, # Maintain the data state
|
219 |
+
gr.update(interactive=False), # Disable the submit button
|
220 |
+
gr.update(visible=True, open=True), # Proceed to select_model_acc
|
221 |
gr.update(visible=True, open=False)
|
222 |
)
|
223 |
else:
|
|
|
227 |
gr.update(open=True, visible=True),
|
228 |
result,
|
229 |
gr.update(interactive=False),
|
230 |
+
gr.update(visible=False), # Keep current behavior
|
231 |
gr.update(visible=True, open=True)
|
232 |
)
|
233 |
else:
|
|
|
248 |
)
|
249 |
|
250 |
|
|
|
251 |
######################################
|
252 |
+
# TABLE SELECTION PART #
|
253 |
######################################
|
254 |
with select_table_acc:
|
255 |
+
table_selector = gr.CheckboxGroup(choices=[], label="Select tables to display", value=[])
|
256 |
+
table_outputs = [gr.DataFrame(label=f"Table {i+1}", interactive=True, visible=False) for i in range(5)]
|
257 |
+
selected_table_names = gr.Textbox(label="Selected tables", visible=False, interactive=False)
|
|
|
258 |
|
259 |
+
# Model selection button (initially disabled)
|
260 |
open_model_selection = gr.Button("Choose your models", interactive=False)
|
261 |
|
262 |
def update_table_list(data):
|
263 |
+
"""Dynamically updates the list of available tables."""
|
264 |
if isinstance(data, dict) and data:
|
265 |
+
table_names = list(data.keys()) # Return only the table names
|
266 |
+
return gr.update(choices=table_names, value=[]) # Reset selections
|
267 |
return gr.update(choices=[], value=[])
|
268 |
|
269 |
def show_selected_tables(data, selected_tables):
|
270 |
+
"""Displays only the tables selected by the user and enables the button."""
|
271 |
updates = []
|
272 |
if isinstance(data, dict) and data:
|
273 |
+
available_tables = list(data.keys()) # Actually available names
|
274 |
+
selected_tables = [t for t in selected_tables if t in available_tables] # Filter valid selections
|
275 |
|
276 |
+
tables = {name: data[name] for name in selected_tables} # Filter the DataFrames
|
277 |
|
278 |
for i, (name, df) in enumerate(tables.items()):
|
279 |
+
updates.append(gr.update(value=df, label=f"Table: {name}", visible=True))
|
280 |
|
281 |
+
# If there are fewer than 5 tables, hide the other DataFrames
|
282 |
for _ in range(len(tables), 5):
|
283 |
updates.append(gr.update(visible=False))
|
284 |
else:
|
285 |
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(5)]
|
286 |
|
287 |
+
# Enable/disable the button based on selections
|
288 |
+
button_state = bool(selected_tables) # True if at least one table is selected, False otherwise
|
289 |
+
updates.append(gr.update(interactive=button_state)) # Update button state
|
290 |
|
291 |
return updates
|
292 |
|
293 |
def show_selected_table_names(selected_tables):
|
294 |
+
"""Displays the names of the selected tables when the button is pressed."""
|
295 |
if selected_tables:
|
296 |
return gr.update(value=", ".join(selected_tables), visible=False)
|
297 |
return gr.update(value="", visible=False)
|
298 |
|
299 |
+
# Automatically updates the checkbox list when `data_state` changes
|
300 |
data_state.change(fn=update_table_list, inputs=[data_state], outputs=[table_selector])
|
301 |
|
302 |
+
# Updates the visible tables and the button state based on user selections
|
303 |
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection])
|
304 |
|
305 |
+
# Shows the list of selected tables when "Choose your models" is clicked
|
306 |
open_model_selection.click(fn=show_selected_table_names, inputs=[table_selector], outputs=[selected_table_names])
|
307 |
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
|
308 |
|
309 |
|
|
|
310 |
####################################
|
311 |
+
# MODEL SELECTION PART #
|
312 |
####################################
|
313 |
with select_model_acc:
|
314 |
gr.Markdown("**Model Selection**")
|
315 |
|
316 |
+
# Assume that `us.read_models_csv` also returns the image path
|
317 |
model_list_dict = us.read_models_csv(models_path)
|
318 |
model_list = [model["code"] for model in model_list_dict]
|
319 |
model_images = [model["image_path"] for model in model_list_dict]
|
|
|
321 |
model_checkboxes = []
|
322 |
rows = []
|
323 |
|
324 |
+
# Dynamically create checkboxes with images (3 per row)
|
325 |
for i in range(0, len(model_list), 3):
|
326 |
with gr.Row():
|
327 |
cols = []
|
|
|
338 |
|
339 |
selected_models_output = gr.JSON(visible=False)
|
340 |
|
341 |
+
# Function to get selected models
|
342 |
def get_selected_models(*model_selections):
|
343 |
selected_models = [model for model, selected in zip(model_list, model_selections) if selected]
|
344 |
input_data['models'] = selected_models
|
345 |
+
button_state = bool(selected_models) # True if at least one model is selected, False otherwise
|
346 |
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state)
|
347 |
|
348 |
+
# Submit button (initially disabled)
|
349 |
submit_models_button = gr.Button("Submit Models", interactive=False)
|
350 |
|
351 |
+
# Link checkboxes to selection events
|
352 |
for checkbox in model_checkboxes:
|
353 |
checkbox.change(
|
354 |
fn=get_selected_models,
|
|
|
362 |
outputs=[selected_models_output, select_model_acc, qatch_acc]
|
363 |
)
|
364 |
|
365 |
+
def enable_disable(enable):
|
366 |
+
return (
|
367 |
+
*[gr.update(interactive=enable) for _ in model_checkboxes],
|
368 |
+
gr.update(interactive=enable),
|
369 |
+
gr.update(interactive=enable),
|
370 |
+
gr.update(interactive=enable),
|
371 |
+
gr.update(interactive=enable),
|
372 |
+
gr.update(interactive=enable),
|
373 |
+
gr.update(interactive=enable),
|
374 |
+
*[gr.update(interactive=enable) for _ in table_outputs],
|
375 |
+
gr.update(interactive=enable)
|
376 |
+
)
|
377 |
+
|
378 |
reset_data = gr.Button("Back to upload data section")
|
379 |
+
|
380 |
+
submit_models_button.click(
|
381 |
+
fn=enable_disable,
|
382 |
+
inputs=[gr.State(False)],
|
383 |
+
outputs=[
|
384 |
+
*model_checkboxes,
|
385 |
+
submit_models_button,
|
386 |
+
preview_output,
|
387 |
+
submit_button,
|
388 |
+
file_input,
|
389 |
+
default_checkbox,
|
390 |
+
table_selector,
|
391 |
+
*table_outputs,
|
392 |
+
open_model_selection
|
393 |
+
]
|
394 |
+
)
|
395 |
+
|
396 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
397 |
+
|
398 |
+
reset_data.click(
|
399 |
+
fn=enable_disable,
|
400 |
+
inputs=[gr.State(True)],
|
401 |
+
outputs=[
|
402 |
+
*model_checkboxes,
|
403 |
+
submit_models_button,
|
404 |
+
preview_output,
|
405 |
+
submit_button,
|
406 |
+
file_input,
|
407 |
+
default_checkbox,
|
408 |
+
table_selector,
|
409 |
+
*table_outputs,
|
410 |
+
open_model_selection
|
411 |
+
]
|
412 |
+
)
|
413 |
|
414 |
|
415 |
+
#############################
|
416 |
+
# QATCH EXECUTION #
|
417 |
+
#############################
|
418 |
with qatch_acc:
|
419 |
def change_text(text):
|
420 |
return text
|
421 |
+
|
422 |
+
loading_symbols= {1:"𓆟",
|
423 |
+
2: "𓆞 𓆟",
|
424 |
+
3: "𓆟 𓆞 𓆟",
|
425 |
+
4: "𓆞 𓆟 𓆞 𓆟",
|
426 |
+
5: "𓆟 𓆞 𓆟 𓆞 𓆟",
|
427 |
+
6: "𓆞 𓆟 𓆞 𓆟 𓆞 𓆟",
|
428 |
+
7: "𓆟 𓆞 𓆟 𓆞 𓆟 𓆞 𓆟",
|
429 |
+
8: "𓆞 𓆟 𓆞 𓆟 𓆞 𓆟 𓆞 𓆟",
|
430 |
+
9: "𓆟 𓆞 𓆟 𓆞 𓆟 𓆞 𓆟 𓆞 𓆟",
|
431 |
+
10:"𓆞 𓆟 𓆞 𓆟 𓆞 𓆟 𓆞 𓆟 𓆞 𓆟",
|
432 |
+
}
|
433 |
+
|
434 |
+
def generate_loading_text(percent):
|
435 |
+
num_symbols = (round(percent) % 11) + 1
|
436 |
+
symbols = loading_symbols.get(num_symbols, "𓆟")
|
437 |
+
mirrored_symbols = f'<span class="mirrored">{symbols.strip()}</span>'
|
438 |
+
css_symbols = f'<span class="fish">{symbols.strip()}</span>'
|
439 |
+
return f"<div class='barcontainer'>{css_symbols} <span class='loading'>Generation {percent}%</span>{mirrored_symbols}</div>"
|
440 |
+
#return f"{css_symbols}"+f"# Loading {percent}% #"+f"{mirrored_symbols}"
|
441 |
+
|
442 |
def qatch_flow():
|
443 |
orchestrator_generator = OrchestratorGenerator()
|
444 |
+
# TODO: add to target_df column target_df["columns_used"], tables selection
|
445 |
+
# print(input_data['data']['db'])
|
446 |
target_df = orchestrator_generator.generate_dataset(connector=input_data['data']['db'])
|
447 |
|
448 |
schema_text = utils_get_db_tables_info.utils_extract_db_schema_as_string(
|
|
|
452 |
sql=None
|
453 |
)
|
454 |
|
455 |
+
# TODO: QUERY PREDICTION
|
456 |
predictions_dict = {model: pd.DataFrame(columns=['id', 'question', 'predicted_sql', 'time', 'query', 'db_path']) for model in model_list}
|
457 |
metrics_conc = pd.DataFrame()
|
458 |
+
|
459 |
for model in input_data["models"]:
|
460 |
+
model_image_path = next((m["image_path"] for m in model_list_dict if m["code"] == model), None)
|
461 |
+
yield gr.Image(model_image_path), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
|
462 |
+
|
463 |
for index, row in target_df.iterrows():
|
464 |
+
|
465 |
+
percent_complete = round(((index+1) / len(target_df)) * 100, 2)
|
466 |
+
load_text = f"{generate_loading_text(percent_complete)}"
|
467 |
+
|
468 |
+
question = row['question']
|
469 |
+
display_question = f"<div class='loading' style ='font-size: 1.7rem;'>Natural Language: </div> <div class='sqlquery'>{row['question']}</div>"
|
470 |
+
# yield gr.Textbox(question), gr.Textbox(), *[predictions_dict[model] for model in input_data["models"]], None
|
471 |
+
|
472 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(display_question), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
|
473 |
start_time = time.time()
|
474 |
|
475 |
+
# Simulate prediction
|
476 |
+
time.sleep(0.4)
|
477 |
prediction = "Prediction_placeholder"
|
478 |
+
display_prediction = f"<div class='loading' style ='font-size: 1.7rem;'>Generated SQL: </div><div class='sqlquery'>{prediction}</div>"
|
479 |
+
# Run real prediction here
|
480 |
# prediction = predictor.run(model, schema_text, question)
|
481 |
|
482 |
end_time = time.time()
|
483 |
+
# Create a new row as dataframe
|
484 |
new_row = pd.DataFrame([{
|
485 |
'id': index,
|
486 |
'question': question,
|
|
|
488 |
'time': end_time - start_time,
|
489 |
'query': row["query"],
|
490 |
'db_path': input_data["data_path"]
|
491 |
+
}]).dropna(how="all") # Remove only completely empty rows
|
492 |
+
|
493 |
+
# TODO: use a for loop
|
494 |
for col in target_df.columns:
|
495 |
if col not in new_row.columns:
|
496 |
new_row[col] = row[col]
|
497 |
+
|
498 |
+
# Update model's prediction dataframe incrementally
|
499 |
if not new_row.empty:
|
500 |
predictions_dict[model] = pd.concat([predictions_dict[model], new_row], ignore_index=True)
|
|
|
|
|
501 |
|
502 |
+
# yield gr.Textbox(), gr.Textbox(prediction), *[predictions_dict[model] for model in input_data["models"]], None
|
503 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
|
504 |
+
|
505 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
|
506 |
+
# END
|
507 |
evaluator = OrchestratorEvaluator()
|
508 |
for model in input_data["models"]:
|
509 |
metrics_df_model = evaluator.evaluate_df(
|
510 |
df=predictions_dict[model],
|
511 |
+
target_col_name="query",
|
512 |
+
prediction_col_name="predicted_sql",
|
513 |
+
db_path_name="db_path"
|
514 |
)
|
515 |
metrics_df_model['model'] = model
|
516 |
metrics_conc = pd.concat([metrics_conc, metrics_df_model], ignore_index=True)
|
|
|
518 |
if 'valid_efficiency_score' not in metrics_conc.columns:
|
519 |
metrics_conc['valid_efficiency_score'] = metrics_conc['VES']
|
520 |
|
521 |
+
yield gr.Image(), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
|
522 |
|
523 |
+
# Loading Bar
|
524 |
with gr.Row():
|
525 |
+
# progress = gr.Progress()
|
526 |
variable = gr.Markdown()
|
527 |
|
528 |
+
# NL -> MODEL -> Generated Query
|
529 |
with gr.Row():
|
530 |
with gr.Column():
|
531 |
+
with gr.Column():
|
532 |
+
question_display = gr.Markdown()
|
533 |
+
with gr.Column():
|
534 |
+
gr.Markdown("<div class='leftarrow'>⤴</div>")
|
535 |
with gr.Column():
|
536 |
+
model_logo = gr.Image(visible=True, show_label=False)
|
537 |
with gr.Column():
|
538 |
+
with gr.Column():
|
539 |
+
prediction_display = gr.Markdown()
|
540 |
+
with gr.Column():
|
541 |
+
gr.Markdown("<div class='rightarrow'>⤴</div>")
|
542 |
|
543 |
dataframe_per_model = {}
|
544 |
|
545 |
with gr.Tabs() as model_tabs:
|
546 |
+
tab_dict = {}
|
547 |
for model in model_list:
|
548 |
+
with gr.TabItem(model, visible=(model in input_data["models"])) as tab:
|
|
|
549 |
gr.Markdown(f"**Results for {model}**")
|
550 |
+
tab_dict[model] = tab
|
551 |
dataframe_per_model[model] = gr.DataFrame()
|
552 |
+
# download_pred_model = gr.DownloadButton(label="Download Prediction per Model", visible=False)
|
553 |
+
|
554 |
+
def change_tab():
|
555 |
+
return [gr.update(visible=(model in input_data["models"])) for model in model_list]
|
556 |
|
557 |
+
submit_models_button.click(
|
558 |
+
change_tab,
|
559 |
+
inputs=[],
|
560 |
+
outputs=[tab_dict[model] for model in model_list] # Update TabItem visibility
|
561 |
+
)
|
562 |
|
563 |
+
selected_models_display = gr.JSON(label="Final input data", visible=False)
|
|
|
564 |
metrics_df = gr.DataFrame(visible=False)
|
565 |
+
metrics_df_out = gr.DataFrame(visible=False)
|
566 |
+
|
567 |
submit_models_button.click(
|
568 |
fn=qatch_flow,
|
569 |
inputs=[],
|
570 |
+
outputs=[model_logo, variable, question_display, prediction_display, metrics_df] + list(dataframe_per_model.values())
|
571 |
)
|
572 |
|
573 |
submit_models_button.click(
|
574 |
fn=lambda: gr.update(value=input_data),
|
575 |
outputs=[selected_models_display]
|
576 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
+
# Works for METRICS
|
579 |
+
metrics_df.change(fn=change_text, inputs=[metrics_df], outputs=[metrics_df_out])
|
580 |
|
581 |
proceed_to_metrics_button = gr.Button("Proceed to Metrics")
|
582 |
proceed_to_metrics_button.click(
|
583 |
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
|
584 |
outputs=[qatch_acc, metrics_acc]
|
585 |
)
|
586 |
+
|
587 |
+
def allow_download(metrics_df_out):
|
588 |
+
path = os.path.join(".", "data", "data_results", "results.csv")
|
589 |
+
metrics_df_out.to_csv(path, index=False)
|
590 |
+
return gr.update(value=path, visible=True)
|
591 |
|
592 |
+
download_metrics = gr.DownloadButton(label="Download Metrics Evaluation", visible=False)
|
593 |
+
|
594 |
+
submit_models_button.click(
|
595 |
+
fn=lambda: gr.update(visible=False),
|
596 |
+
outputs=[download_metrics]
|
597 |
+
)
|
598 |
+
#TODO WHY?
|
599 |
+
# download_metrics.click(
|
600 |
+
# fn=lambda: gr.update(open=True, visible=True),
|
601 |
+
# outputs=[download_metrics]
|
602 |
+
# )
|
603 |
+
metrics_df_out.change(fn=allow_download, inputs=[metrics_df_out], outputs=[download_metrics])
|
604 |
+
|
605 |
reset_data = gr.Button("Back to upload data section")
|
606 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
607 |
+
#WHY NOT WORKING?
|
608 |
+
reset_data.click(
|
609 |
+
fn=lambda: gr.update(visible=False),
|
610 |
+
outputs=[download_metrics]
|
611 |
+
)
|
612 |
+
|
613 |
+
reset_data.click(
|
614 |
+
fn=enable_disable,
|
615 |
+
inputs=[gr.State(True)],
|
616 |
+
outputs=[
|
617 |
+
*model_checkboxes,
|
618 |
+
submit_models_button,
|
619 |
+
preview_output,
|
620 |
+
submit_button,
|
621 |
+
file_input,
|
622 |
+
default_checkbox,
|
623 |
+
table_selector,
|
624 |
+
*table_outputs,
|
625 |
+
open_model_selection
|
626 |
+
]
|
627 |
+
)
|
628 |
+
|
629 |
|
630 |
+
##########################################
|
631 |
+
# METRICS VISUALIZATION SECTION #
|
632 |
+
##########################################
|
|
|
|
|
633 |
with metrics_acc:
|
634 |
#confirmation_text = gr.Markdown("## Metrics successfully loaded")
|
635 |
|
|
|
684 |
template='plotly_dark'
|
685 |
)
|
686 |
|
687 |
+
return gr.Plot(fig, visible=True)
|
688 |
|
689 |
def update_plot(selected_metrics, group_by, selected_models):
|
690 |
df = load_data_csv_es()
|
|
|
896 |
|
897 |
metric_multiselect = gr.CheckboxGroup(choices=metrics, label="Select metrics", value=metrics)
|
898 |
model_multiselect = gr.CheckboxGroup(choices=models, label="Select models", value=models)
|
899 |
+
group_radio = gr.Radio(choices=list(group_options.keys()), label="Select grouping", value="Table")
|
900 |
|
901 |
+
output_plot = gr.Plot(visible=False)
|
902 |
|
903 |
query_rate_plot = gr.Plot(value=update_query_rate(models))
|
904 |
|
|
|
923 |
return update_radar(selected_models)
|
924 |
|
925 |
#metrics_df_out.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
926 |
+
proceed_to_metrics_button.click(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
927 |
+
|
928 |
+
proceed_to_metrics_button.click(update_query_rate, inputs=[model_multiselect], outputs=query_rate_plot)
|
929 |
+
|
930 |
metric_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
931 |
group_radio.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
932 |
model_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
|
|
|
939 |
reset_data = gr.Button("Back to upload data section")
|
940 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
941 |
|
942 |
+
reset_data.click(
|
943 |
+
fn=lambda: gr.update(visible=False),
|
944 |
+
outputs=[download_metrics]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
945 |
)
|
946 |
+
reset_data.click(
|
947 |
+
fn=lambda: gr.update(visible=False),
|
948 |
+
outputs=[download_metrics]
|
949 |
+
)
|
950 |
+
reset_data.click(
|
951 |
+
fn=enable_disable,
|
952 |
+
inputs=[gr.State(True)],
|
953 |
+
outputs=[
|
954 |
+
*model_checkboxes,
|
955 |
+
submit_models_button,
|
956 |
+
preview_output,
|
957 |
+
submit_button,
|
958 |
+
file_input,
|
959 |
+
default_checkbox,
|
960 |
+
table_selector,
|
961 |
+
*table_outputs,
|
962 |
+
open_model_selection
|
963 |
+
]
|
964 |
+
)
|
965 |
+
|
966 |
+
|
967 |
|
968 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
style.css
CHANGED
@@ -28,3 +28,77 @@
|
|
28 |
width: 100% !important;
|
29 |
max-width: none !important;
|
30 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
width: 100% !important;
|
29 |
max-width: none !important;
|
30 |
}
|
31 |
+
|
32 |
+
.mirrored {
|
33 |
+
display: inline-block;
|
34 |
+
transform: scaleX(-1); /* Riflette il testo orizzontalmente */
|
35 |
+
font-family: 'Poppins', sans-serif;
|
36 |
+
font-size: 1.5rem;
|
37 |
+
font-weight: 700;
|
38 |
+
letter-spacing: 1px;
|
39 |
+
text-align: center;
|
40 |
+
color: #222;
|
41 |
+
background: linear-gradient(45deg, #1a41d9, #6c69d2);
|
42 |
+
-webkit-background-clip: text;
|
43 |
+
-webkit-text-fill-color: transparent;
|
44 |
+
padding: 20px;
|
45 |
+
margin: 20px 0;
|
46 |
+
position: center;
|
47 |
+
}
|
48 |
+
.fish{
|
49 |
+
font-family: 'Poppins', sans-serif;
|
50 |
+
font-size: 1.5rem;
|
51 |
+
font-weight: 700;
|
52 |
+
letter-spacing: 1px;
|
53 |
+
text-align: center;
|
54 |
+
color: #222;
|
55 |
+
background: linear-gradient(45deg, #1a41d9, #6c69d2);
|
56 |
+
-webkit-background-clip: text;
|
57 |
+
-webkit-text-fill-color: transparent;
|
58 |
+
padding: 20px;
|
59 |
+
margin: 20px 0;
|
60 |
+
position: center;
|
61 |
+
}
|
62 |
+
|
63 |
+
.loading {
|
64 |
+
font-family: 'Poppins', sans-serif;
|
65 |
+
font-size: 2.7rem;
|
66 |
+
font-weight: 700;
|
67 |
+
text-transform: uppercase;
|
68 |
+
letter-spacing: 1px;
|
69 |
+
text-align: center;
|
70 |
+
color: #222;
|
71 |
+
background: linear-gradient(45deg, #40abe9, #1e99e5);
|
72 |
+
-webkit-background-clip: text;
|
73 |
+
-webkit-text-fill-color: transparent;
|
74 |
+
padding: 20px;
|
75 |
+
/*margin: 20px 0;*/
|
76 |
+
position: center;
|
77 |
+
}
|
78 |
+
.barcontainer {
|
79 |
+
display: flex;
|
80 |
+
justify-content: center;
|
81 |
+
align-items: center;
|
82 |
+
}
|
83 |
+
.leftarrow, .rightarrow {
|
84 |
+
display: flex;
|
85 |
+
justify-content: center;
|
86 |
+
align-items: center;
|
87 |
+
font-size: 2.7rem;
|
88 |
+
color: #1d60dd;
|
89 |
+
}
|
90 |
+
.leftarrow {
|
91 |
+
transform: rotate(-270deg);
|
92 |
+
}
|
93 |
+
|
94 |
+
.sqlquery {
|
95 |
+
background-color: #272822;
|
96 |
+
color: #f8f8f2;
|
97 |
+
font-family: 'Courier New', monospace;
|
98 |
+
padding: 15px;
|
99 |
+
border-radius: 5px;
|
100 |
+
overflow-x: auto;
|
101 |
+
white-space: pre-wrap;
|
102 |
+
word-wrap: break-word;
|
103 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
104 |
+
}
|