File size: 4,377 Bytes
d7c9e73
 
 
 
 
c2e2aa2
 
 
 
d7c9e73
c2e2aa2
 
 
 
 
d7c9e73
c2e2aa2
 
 
d7c9e73
 
 
 
c2e2aa2
 
 
d7c9e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2e2aa2
 
d7c9e73
 
 
 
 
 
 
 
 
 
 
c2e2aa2
d7c9e73
c2e2aa2
d7c9e73
c2e2aa2
d7c9e73
 
 
 
 
 
 
 
 
 
 
 
 
 
c2e2aa2
d7c9e73
 
 
 
 
 
 
 
c2e2aa2
d7c9e73
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from functools import partial
import os
import re
from xml.parsers.expat import model

# https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
if os.environ.get("SPACES_ZERO_GPU") is not None:
    import spaces
else:

    class spaces:
        @staticmethod
        def GPU(func):
            def wrapper(*args, **kwargs):
                return func(*args, **kwargs)

            return wrapper


from transformers import pipeline as hf_pipeline
import torch
import litellm


class ModelPrediction:
    def __init__(self, model_name):
        self.model_name2pred_func = {
            "gpt-3.5": self._model_prediction("gpt-3.5"),
            "gpt-4o-mini": self._model_prediction("gpt-4o-mini"),
            "o1-mini": self._model_prediction("o1-mini"),
            "QwQ": self._model_prediction("QwQ"),
            "DeepSeek-R1-Distill-Llama-70B": self._model_prediction(
                "DeepSeek-R1-Distill-Llama-70B"
            ),
        }

        self._model_name = None
        self._pipeline = None

    @property
    def pipeline(self):
        if self._pipeline is None:
            self._pipeline = hf_pipeline(
                task="text-generation",
                model=self._model_name,
                torch_dtype=torch.bfloat16,
                device_map="auto",
            )
        return self._pipeline

    def _reset_pipeline(self, model_name):
        if self._model_name != model_name:
            self._model_name = model_name
            self._pipeline = None

    @staticmethod
    def _extract_answer_from_pred(pred: str) -> str:
        # extract with regex everything is between <answer> and </answer>
        matches = re.findall(r"<answer>(.*?)</answer>", pred, re.DOTALL)
        if matches:
            return matches[-1].replace("```", "").replace("sql", "").strip()
        else:
            matches = re.findall(r"```sql(.*?)```", pred, re.DOTALL)
            return matches[-1].strip() if matches else pred

    def make_prediction(self, prompt, model_name):
        if model_name not in self.model_name2pred_func:
            raise ValueError(
                "Model not supported",
                "supported models are",
                self.model_name2pred_func.keys(),
            )

        prediction = self.model_name2pred_func[model_name](prompt)
        prediction["response_parsed"] = self._extract_answer_from_pred(
            prediction["response"]
        )
        return prediction

    def _model_prediction(self, model_name):
        predict_fun = self.predict_with_api
        if "gpt-3.5" in model_name:
            model_name = "openai/gpt-3.5-turbo-0125"
        elif "gpt-4o-mini" in model_name:
            model_name = "openai/gpt-4o-mini-2024-07-18"
        elif "o1-mini" in model_name:
            model_name = "openai/o1-mini-2024-09-12"
        elif "QwQ" in model_name:
            model_name = "together_ai/Qwen/QwQ-32B"
        elif "DeepSeek-R1-Distill-Llama-70B" in model_name:
            model_name = "together_ai/deepseek-ai/DeepSeek-R1-Distill-Llama-70B"
        else:
            raise ValueError("Model forbidden")

        return partial(predict_fun, model_name=model_name)

    def predict_with_api(self, prompt, model_name):  # -> dict[str, Any | float]:
        def track_cost_callback(
            kwargs,  # kwargs to completion
            completion_response,  # response from completion
            start_time,
            end_time,  # start/end time
        ):
            try:
                response_cost = kwargs[
                    "response_cost"
                ]  # litellm calculates response cost for you
                call_cost = response_cost
            except:
                pass

        litellm.success_callback = [track_cost_callback]
        call_cost = 0.0
        response = litellm.completion(
            model=model_name,
            messages=[{"role": "user", "content": prompt}],
            num_retries=2,
        )
        return {"response": response, "cost": call_cost}

    @spaces.GPU
    def predict_with_hf(self, prompt, model_name):  # -> dict[str, Any | float]:
        self._reset_pipeline(model_name)
        response = self.pipeline([{"role": "user", "content": prompt}])[0][
            "generated_text"
        ][-1]["content"]
        return {"response": response, "cost": 0.0}