Spaces:
Sleeping
Sleeping
Commit
·
d7c9e73
1
Parent(s):
8c0ca3e
feat add prediction with togheter AI and HF pipe
Browse files- prediction.py +105 -23
- requirements.txt +1 -1
prediction.py
CHANGED
@@ -1,45 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
|
2 |
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
3 |
import spaces
|
4 |
else:
|
|
|
5 |
class spaces:
|
6 |
@staticmethod
|
7 |
def GPU(func):
|
8 |
def wrapper(*args, **kwargs):
|
9 |
return func(*args, **kwargs)
|
|
|
10 |
return wrapper
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
13 |
|
14 |
class ModelPrediction:
|
15 |
def __init__(self, model_name):
|
16 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
def make_prediction(prompt):
|
19 |
-
pass
|
20 |
-
|
21 |
def _model_prediction(self, model_name):
|
22 |
-
predict_fun = predict_with_api
|
23 |
-
if
|
24 |
-
model_name =
|
25 |
-
elif
|
26 |
-
model_name =
|
27 |
-
elif
|
28 |
-
model_name =
|
29 |
-
elif
|
30 |
-
model_name =
|
31 |
-
elif
|
32 |
-
model_name =
|
33 |
else:
|
34 |
-
raise ValueError(
|
35 |
-
|
36 |
-
return
|
37 |
|
38 |
-
|
39 |
-
pass
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from xml.parsers.expat import model
|
5 |
+
|
6 |
# https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
|
7 |
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
8 |
import spaces
|
9 |
else:
|
10 |
+
|
11 |
class spaces:
|
12 |
@staticmethod
|
13 |
def GPU(func):
|
14 |
def wrapper(*args, **kwargs):
|
15 |
return func(*args, **kwargs)
|
16 |
+
|
17 |
return wrapper
|
18 |
|
19 |
|
20 |
+
from transformers import pipeline as hf_pipeline
|
21 |
+
import torch
|
22 |
+
import litellm
|
23 |
+
|
24 |
|
25 |
class ModelPrediction:
|
26 |
def __init__(self, model_name):
|
27 |
+
self.model_name2pred_func = {
|
28 |
+
"gpt-3.5": self._model_prediction("gpt-3.5"),
|
29 |
+
"gpt-4o-mini": self._model_prediction("gpt-4o-mini"),
|
30 |
+
"o1-mini": self._model_prediction("o1-mini"),
|
31 |
+
"QwQ": self._model_prediction("QwQ"),
|
32 |
+
"DeepSeek-R1-Distill-Llama-70B": self._model_prediction(
|
33 |
+
"DeepSeek-R1-Distill-Llama-70B"
|
34 |
+
),
|
35 |
+
}
|
36 |
+
|
37 |
+
self._model_name = None
|
38 |
+
self._pipeline = None
|
39 |
+
|
40 |
+
@property
|
41 |
+
def pipeline(self):
|
42 |
+
if self._pipeline is None:
|
43 |
+
self._pipeline = hf_pipeline(
|
44 |
+
task="text-generation",
|
45 |
+
model=self._model_name,
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
device_map="auto",
|
48 |
+
)
|
49 |
+
return self._pipeline
|
50 |
+
|
51 |
+
def _reset_pipeline(self, model_name):
|
52 |
+
if self._model_name != model_name:
|
53 |
+
self._model_name = model_name
|
54 |
+
self._pipeline = None
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def _extract_answer_from_pred(pred: str) -> str:
|
58 |
+
# extract with regex everything is between <answer> and </answer>
|
59 |
+
matches = re.findall(r"<answer>(.*?)</answer>", pred, re.DOTALL)
|
60 |
+
if matches:
|
61 |
+
return matches[-1].replace("```", "").replace("sql", "").strip()
|
62 |
+
else:
|
63 |
+
matches = re.findall(r"```sql(.*?)```", pred, re.DOTALL)
|
64 |
+
return matches[-1].strip() if matches else pred
|
65 |
+
|
66 |
+
def make_prediction(self, prompt, model_name):
|
67 |
+
if model_name not in self.model_name2pred_func:
|
68 |
+
raise ValueError(
|
69 |
+
"Model not supported",
|
70 |
+
"supported models are",
|
71 |
+
self.model_name2pred_func.keys(),
|
72 |
+
)
|
73 |
+
|
74 |
+
prediction = self.model_name2pred_func[model_name](prompt)
|
75 |
+
prediction["response_parsed"] = self._extract_answer_from_pred(
|
76 |
+
prediction["response"]
|
77 |
+
)
|
78 |
+
return prediction
|
79 |
|
|
|
|
|
|
|
80 |
def _model_prediction(self, model_name):
|
81 |
+
predict_fun = self.predict_with_api
|
82 |
+
if "gpt-3.5" in model_name:
|
83 |
+
model_name = "openai/gpt-3.5-turbo-0125"
|
84 |
+
elif "gpt-4o-mini" in model_name:
|
85 |
+
model_name = "openai/gpt-4o-mini-2024-07-18"
|
86 |
+
elif "o1-mini" in model_name:
|
87 |
+
model_name = "openai/o1-mini-2024-09-12"
|
88 |
+
elif "QwQ" in model_name:
|
89 |
+
model_name = "together_ai/Qwen/QwQ-32B"
|
90 |
+
elif "DeepSeek-R1-Distill-Llama-70B" in model_name:
|
91 |
+
model_name = "together_ai/deepseek-ai/DeepSeek-R1-Distill-Llama-70B"
|
92 |
else:
|
93 |
+
raise ValueError("Model forbidden")
|
|
|
|
|
94 |
|
95 |
+
return partial(predict_fun, model_name=model_name)
|
|
|
96 |
|
97 |
+
def predict_with_api(self, prompt, model_name): # -> dict[str, Any | float]:
|
98 |
+
def track_cost_callback(
|
99 |
+
kwargs, # kwargs to completion
|
100 |
+
completion_response, # response from completion
|
101 |
+
start_time,
|
102 |
+
end_time, # start/end time
|
103 |
+
):
|
104 |
+
try:
|
105 |
+
response_cost = kwargs[
|
106 |
+
"response_cost"
|
107 |
+
] # litellm calculates response cost for you
|
108 |
+
call_cost = response_cost
|
109 |
+
except:
|
110 |
+
pass
|
111 |
|
112 |
+
litellm.success_callback = [track_cost_callback]
|
113 |
+
call_cost = 0.0
|
114 |
+
response = litellm.completion(
|
115 |
+
model=model_name,
|
116 |
+
messages=[{"role": "user", "content": prompt}],
|
117 |
+
num_retries=2,
|
118 |
+
)
|
119 |
+
return {"response": response, "cost": call_cost}
|
120 |
|
121 |
+
@spaces.GPU
|
122 |
+
def predict_with_hf(self, prompt, model_name): # -> dict[str, Any | float]:
|
123 |
+
self._reset_pipeline(model_name)
|
124 |
+
response = self.pipeline([{"role": "user", "content": prompt}])[0][
|
125 |
+
"generated_text"
|
126 |
+
][-1]["content"]
|
127 |
+
return {"response": response, "cost": 0.0}
|
requirements.txt
CHANGED
@@ -10,7 +10,7 @@ eval-type-backport>=0.2.0
|
|
10 |
openai==1.66.3
|
11 |
litellm==1.63.14
|
12 |
together==1.4.6
|
13 |
-
|
14 |
# Conditional dependency for Gradio (requires Python >=3.10)
|
15 |
gradio>=5.20.1; python_version >= "3.10"
|
16 |
|
|
|
10 |
openai==1.66.3
|
11 |
litellm==1.63.14
|
12 |
together==1.4.6
|
13 |
+
litellm==1.63.14
|
14 |
# Conditional dependency for Gradio (requires Python >=3.10)
|
15 |
gradio>=5.20.1; python_version >= "3.10"
|
16 |
|