Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,903 Bytes
6686859 eeb2755 6686859 b1c0860 6686859 b1c0860 eeb2755 b1c0860 eeb2755 6686859 b1c0860 91840f8 b1c0860 eeb2755 b1c0860 eeb2755 6686859 b1c0860 eeb2755 b1c0860 eeb2755 b1c0860 eeb2755 2e90707 eeb2755 b1c0860 eeb2755 9499f0c eeb2755 9499f0c eeb2755 9499f0c eeb2755 6686859 eeb2755 6686859 eeb2755 6686859 eeb2755 6686859 eeb2755 b1c0860 eeb2755 b1c0860 eeb2755 6686859 eeb2755 b1c0860 eeb2755 b1c0860 eeb2755 b1c0860 eeb2755 b1c0860 eeb2755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import time
import requests
from typing import Optional, Dict, Any, List
import json
import tempfile
from PIL import Image
from groq import Groq
from openai import OpenAI
import spaces
class VideoLLMInferenceNode:
def __init__(self):
"""
Initialize the VideoLLMInferenceNode without VLM captioning dependency
"""
self.sambanova_api_key = os.environ.get("SAMBANOVA_API_KEY", "")
self.groq_api_key = os.environ.get("GROQ_API_KEY", "")
# Initialize API clients if keys are available
if self.groq_api_key:
self.groq_client = Groq(api_key=self.groq_api_key)
else:
self.groq_client = None
if self.sambanova_api_key:
self.sambanova_client = OpenAI(
api_key=self.sambanova_api_key,
base_url="https://api.sambanova.ai/v1",
)
else:
self.sambanova_client = None
@spaces.GPU()
def analyze_image(self, image_path: str, question: Optional[str] = None) -> str:
"""
Analyze an image using VLM model directly
Args:
image_path: Path to the image file
question: Optional question to ask about the image
Returns:
str: Analysis result
"""
if not image_path:
return "Please upload an image."
if not question or question.strip() == "":
question = "Describe this image in detail."
try:
# Import and use VLMCaptioning within this GPU-scoped function
from app import get_vlm_captioner
vlm = get_vlm_captioner()
return vlm.describe_image(image_path, question)
except Exception as e:
return f"Error analyzing image: {str(e)}"
@spaces.GPU()
def analyze_video(self, video_path: str) -> str:
"""
Analyze a video using VLM model directly
Args:
video_path: Path to the video file
Returns:
str: Analysis result
"""
if not video_path:
return "Please upload a video."
try:
# Import and use VLMCaptioning within this GPU-scoped function
from app import get_vlm_captioner
vlm = get_vlm_captioner()
return vlm.describe_video(video_path)
except Exception as e:
return f"Error analyzing video: {str(e)}"
def generate_video_prompt(
self,
concept: str,
style: str = "Simple",
camera_style: str = "None",
camera_direction: str = "None",
pacing: str = "None",
special_effects: str = "None",
custom_elements: str = "",
provider: str = "SambaNova",
model: str = "Meta-Llama-3.1-70B-Instruct",
prompt_length: str = "Medium"
) -> str:
"""
Generate a video prompt using the specified LLM provider
Args:
concept: Core concept for the video
style: Video style
camera_style: Camera style
camera_direction: Camera direction
pacing: Pacing rhythm
special_effects: Special effects approach
custom_elements: Custom technical elements
provider: LLM provider (SambaNova or Groq)
model: Model name
prompt_length: Desired prompt length
Returns:
str: Generated video prompt
"""
if not concept:
return "Please enter a concept for the video."
# Build the prompt
system_message = """You are a professional video prompt generator. Your task is to create detailed, technical, and creative video prompts based on user inputs.
The prompts should be suitable for text-to-video AI models and include specific technical details that match the requested style, camera movement, pacing, and effects.
Focus on creating high-quality, cohesive prompts that could be used to generate impressive AI videos."""
# Set prompt length guidelines
length_guide = {
"Short": "Create a concise prompt of 2-3 sentences.",
"Medium": "Create a detailed prompt of 4-6 sentences.",
"Long": "Create an extensive prompt with 7-10 sentences covering all details."
}
# Put together options for the prompt
options = []
if style and style != "None":
options.append(f"Style: {style}")
if camera_style and camera_style != "None":
options.append(f"Camera Movement Style: {camera_style}")
if camera_direction and camera_direction != "None":
options.append(f"Camera Direction: {camera_direction}")
if pacing and pacing != "None":
options.append(f"Pacing Rhythm: {pacing}")
if special_effects and special_effects != "None":
options.append(f"Special Effects: {special_effects}")
if custom_elements:
options.append(f"Custom Elements: {custom_elements}")
options_text = "\n".join(options)
user_message = f"""Create a video prompt based on the following concept and specifications:
CONCEPT: {concept}
SPECIFICATIONS:
{options_text}
{length_guide.get(prompt_length, length_guide["Medium"])}
The prompt should be detailed and technical, specifically mentioning camera angles, movements, lighting, transitions, and other visual elements that would create an impressive AI-generated video.
"""
# Call the appropriate API based on provider
try:
if provider == "SambaNova":
if self.sambanova_client:
return self._call_sambanova_client(system_message, user_message, model)
else:
return self._call_sambanova_api(system_message, user_message, model)
elif provider == "Groq":
if self.groq_client:
return self._call_groq_client(system_message, user_message, model)
else:
return self._call_groq_api(system_message, user_message, model)
else:
return "Unsupported provider. Please select SambaNova or Groq."
except Exception as e:
return f"Error generating prompt: {str(e)}"
def _call_sambanova_client(self, system_message: str, user_message: str, model: str) -> str:
"""Call the SambaNova API using the client library"""
try:
chat_completion = self.sambanova_client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
)
return chat_completion.choices[0].message.content
except Exception as e:
return f"Error from SambaNova API: {str(e)}"
def _call_sambanova_api(self, system_message: str, user_message: str, model: str) -> str:
"""Call the SambaNova API using direct HTTP requests"""
if not self.sambanova_api_key:
return "SambaNova API key not configured. Please set the SAMBANOVA_API_KEY environment variable."
api_url = "https://api.sambanova.ai/api/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.sambanova_api_key}"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
}
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result.get("choices", [{}])[0].get("message", {}).get("content", "No content returned")
else:
return f"Error from SambaNova API: {response.status_code} - {response.text}"
def _call_groq_client(self, system_message: str, user_message: str, model: str) -> str:
"""Call the Groq API using the client library"""
try:
chat_completion = self.groq_client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
)
return chat_completion.choices[0].message.content
except Exception as e:
return f"Error from Groq API: {str(e)}"
def _call_groq_api(self, system_message: str, user_message: str, model: str) -> str:
"""Call the Groq API using direct HTTP requests"""
if not self.groq_api_key:
return "Groq API key not configured. Please set the GROQ_API_KEY environment variable."
api_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.groq_api_key}"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
}
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result.get("choices", [{}])[0].get("message", {}).get("content", "No content returned")
else:
return f"Error from Groq API: {response.status_code} - {response.text}" |