Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
91840f8
1
Parent(s):
13fa156
understanding
Browse files- app.py +137 -109
- llm_inference_video.py +12 -1
- vlm_captions.py +64 -0
app.py
CHANGED
@@ -17,119 +17,147 @@ def create_video_interface():
|
|
17 |
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
|
18 |
gr.HTML(title)
|
19 |
|
20 |
-
with gr.
|
21 |
-
with gr.
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
"Meta-Llama-3.1-70B-Instruct",
|
102 |
"Meta-Llama-3.1-405B-Instruct",
|
103 |
"Meta-Llama-3.1-8B-Instruct"
|
104 |
-
]
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
return demo
|
135 |
|
|
|
17 |
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
|
18 |
gr.HTML(title)
|
19 |
|
20 |
+
with gr.Tab("Video Prompt Generator"):
|
21 |
+
with gr.Row():
|
22 |
+
with gr.Column(scale=1):
|
23 |
+
input_concept = gr.Textbox(label="Core Concept/Thematic Input", lines=3)
|
24 |
+
style = gr.Dropdown(
|
25 |
+
choices=["Minimalist", "Simple", "Detailed", "Descriptive", "Dynamic",
|
26 |
+
"Cinematic", "Documentary", "Animation", "Action", "Experimental"],
|
27 |
+
value="Simple",
|
28 |
+
label="Video Style"
|
29 |
+
)
|
30 |
+
custom_elements = gr.Textbox(label="Custom Technical Elements",
|
31 |
+
placeholder="e.g., Infrared hybrid, Datamosh transitions")
|
32 |
+
prompt_length = gr.Dropdown(
|
33 |
+
choices=["Short", "Medium", "Long"],
|
34 |
+
value="Medium",
|
35 |
+
label="Prompt Length"
|
36 |
+
)
|
37 |
+
|
38 |
+
with gr.Column(scale=1):
|
39 |
+
camera_direction = gr.Dropdown(
|
40 |
+
choices=[
|
41 |
+
"None",
|
42 |
+
"Zoom in", "Zoom out", "Pan left", "Pan right",
|
43 |
+
"Tilt up", "Tilt down", "Orbital rotation",
|
44 |
+
"Push in", "Pull out", "Track forward", "Track backward",
|
45 |
+
"Spiral in", "Spiral out", "Arc movement",
|
46 |
+
"Diagonal traverse", "Vertical rise", "Vertical descent"
|
47 |
+
],
|
48 |
+
value="None",
|
49 |
+
label="Camera Direction"
|
50 |
+
)
|
51 |
+
|
52 |
+
camera_style = gr.Dropdown(
|
53 |
+
choices=[
|
54 |
+
"None",
|
55 |
+
"Steadicam flow", "Drone aerials", "Handheld urgency", "Crane elegance",
|
56 |
+
"Dolly precision", "VR 360", "Multi-angle rig", "Static tripod",
|
57 |
+
"Gimbal smoothness", "Slider motion", "Jib sweep", "POV immersion",
|
58 |
+
"Time-slice array", "Macro extreme", "Tilt-shift miniature",
|
59 |
+
"Snorricam character", "Whip pan dynamics", "Dutch angle tension",
|
60 |
+
"Underwater housing", "Periscope lens"
|
61 |
+
],
|
62 |
+
value="None",
|
63 |
+
label="Camera Movement Style"
|
64 |
+
)
|
65 |
+
|
66 |
+
pacing = gr.Dropdown(
|
67 |
+
choices=[
|
68 |
+
"None",
|
69 |
+
"Slow burn", "Rhythmic pulse", "Frantic energy", "Ebb and flow",
|
70 |
+
"Hypnotic drift", "Time-lapse rush", "Stop-motion staccato",
|
71 |
+
"Gradual build", "Quick cut rhythm", "Long take meditation",
|
72 |
+
"Jump cut energy", "Match cut flow", "Cross-dissolve dreamscape",
|
73 |
+
"Parallel action", "Slow motion impact", "Ramping dynamics",
|
74 |
+
"Montage tempo", "Continuous flow", "Episodic breaks"
|
75 |
+
],
|
76 |
+
value="None",
|
77 |
+
label="Pacing Rhythm"
|
78 |
+
)
|
79 |
+
special_effects = gr.Dropdown(
|
80 |
+
choices=[
|
81 |
+
"None",
|
82 |
+
"Practical effects", "CGI enhancement", "Analog glitches",
|
83 |
+
"Light painting", "Projection mapping", "Nanosecond exposures",
|
84 |
+
"Double exposure", "Smoke diffusion", "Lens flare artistry",
|
85 |
+
"Particle systems", "Holographic overlay", "Chromatic aberration",
|
86 |
+
"Digital distortion", "Wire removal", "Motion capture",
|
87 |
+
"Miniature integration", "Weather simulation", "Color grading",
|
88 |
+
"Mixed media composite", "Neural style transfer"
|
89 |
+
],
|
90 |
+
value="None",
|
91 |
+
label="SFX Approach"
|
92 |
+
)
|
93 |
+
|
94 |
+
with gr.Column(scale=1):
|
95 |
+
provider = gr.Dropdown(
|
96 |
+
choices=["SambaNova", "Groq"],
|
97 |
+
value="SambaNova",
|
98 |
+
label="LLM Provider"
|
99 |
+
)
|
100 |
+
model = gr.Dropdown(
|
101 |
+
choices=[
|
102 |
+
"Meta-Llama-3.1-70B-Instruct",
|
103 |
+
"Meta-Llama-3.1-405B-Instruct",
|
104 |
+
"Meta-Llama-3.1-8B-Instruct"
|
105 |
+
],
|
106 |
+
value="Meta-Llama-3.1-70B-Instruct",
|
107 |
+
label="Model"
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
generate_btn = gr.Button("Generate Video Prompt", variant="primary")
|
112 |
+
output = gr.Textbox(label="Generated Prompt", lines=12, show_copy_button=True)
|
113 |
+
|
114 |
+
def update_models(provider):
|
115 |
+
models = {
|
116 |
+
"Groq": ["llama-3.3-70b-versatile"],
|
117 |
+
"SambaNova": [
|
118 |
"Meta-Llama-3.1-70B-Instruct",
|
119 |
"Meta-Llama-3.1-405B-Instruct",
|
120 |
"Meta-Llama-3.1-8B-Instruct"
|
121 |
+
]
|
122 |
+
}
|
123 |
+
return gr.Dropdown(choices=models[provider], value=models[provider][0])
|
124 |
+
|
125 |
+
provider.change(update_models, inputs=provider, outputs=model)
|
126 |
+
|
127 |
+
generate_btn.click(
|
128 |
+
llm_node.generate_video_prompt,
|
129 |
+
inputs=[input_concept, style, camera_style, camera_direction, pacing, special_effects,
|
130 |
+
custom_elements, provider, model, prompt_length],
|
131 |
+
outputs=output
|
132 |
+
)
|
133 |
+
|
134 |
+
with gr.Tab("Visual Analysis"):
|
135 |
+
with gr.Row():
|
136 |
+
with gr.Column():
|
137 |
+
image_input = gr.Image(label="Upload Image")
|
138 |
+
image_question = gr.Textbox(
|
139 |
+
label="Question (optional)",
|
140 |
+
placeholder="What is in this image?"
|
141 |
+
)
|
142 |
+
analyze_image_btn = gr.Button("Analyze Image")
|
143 |
+
image_output = gr.Textbox(label="Analysis Result", lines=5)
|
144 |
+
|
145 |
+
with gr.Column():
|
146 |
+
video_input = gr.Video(label="Upload Video")
|
147 |
+
analyze_video_btn = gr.Button("Analyze Video")
|
148 |
+
video_output = gr.Textbox(label="Video Analysis", lines=10)
|
149 |
+
|
150 |
+
analyze_image_btn.click(
|
151 |
+
llm_node.analyze_image,
|
152 |
+
inputs=[image_input, image_question],
|
153 |
+
outputs=image_output
|
154 |
+
)
|
155 |
|
156 |
+
analyze_video_btn.click(
|
157 |
+
llm_node.analyze_video,
|
158 |
+
inputs=video_input,
|
159 |
+
outputs=video_output
|
160 |
+
)
|
161 |
|
162 |
return demo
|
163 |
|
llm_inference_video.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import random
|
3 |
from groq import Groq
|
4 |
from openai import OpenAI
|
5 |
-
from
|
6 |
|
7 |
class VideoLLMInferenceNode:
|
8 |
def __init__(self):
|
@@ -14,6 +14,17 @@ class VideoLLMInferenceNode:
|
|
14 |
api_key=self.sambanova_api_key,
|
15 |
base_url="https://api.sambanova.ai/v1",
|
16 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def generate_video_prompt(
|
19 |
self,
|
|
|
2 |
import random
|
3 |
from groq import Groq
|
4 |
from openai import OpenAI
|
5 |
+
from vlm_captions import VLMCaptioning
|
6 |
|
7 |
class VideoLLMInferenceNode:
|
8 |
def __init__(self):
|
|
|
14 |
api_key=self.sambanova_api_key,
|
15 |
base_url="https://api.sambanova.ai/v1",
|
16 |
)
|
17 |
+
|
18 |
+
# Initialize VLM captioning
|
19 |
+
self.vlm = VLMCaptioning()
|
20 |
+
|
21 |
+
def analyze_image(self, image_path, question=None):
|
22 |
+
"""Analyze image using MiniCPM-O"""
|
23 |
+
return self.vlm.analyze_image(image_path, question)
|
24 |
+
|
25 |
+
def analyze_video(self, video_path):
|
26 |
+
"""Analyze video using MiniCPM-O"""
|
27 |
+
return self.vlm.analyze_video_frames(video_path)
|
28 |
|
29 |
def generate_video_prompt(
|
30 |
self,
|
vlm_captions.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import AutoModel, AutoTokenizer
|
4 |
+
from decord import VideoReader, cpu
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
class VLMCaptioning:
|
8 |
+
def __init__(self):
|
9 |
+
print("Loading MiniCPM-O model...")
|
10 |
+
self.model = AutoModel.from_pretrained(
|
11 |
+
'openbmb/MiniCPM-o-2_6',
|
12 |
+
trust_remote_code=True,
|
13 |
+
attn_implementation='sdpa',
|
14 |
+
torch_dtype=torch.bfloat16
|
15 |
+
)
|
16 |
+
self.model = self.model.eval().cuda()
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-o-2_6', trust_remote_code=True)
|
18 |
+
|
19 |
+
@spaces.GPU()
|
20 |
+
def analyze_image(self, image_path, question="Describe this image in detail."):
|
21 |
+
"""Generate description for a single image"""
|
22 |
+
try:
|
23 |
+
image = Image.open(image_path).convert('RGB')
|
24 |
+
msgs = [{'role': 'user', 'content': [image, question]}]
|
25 |
+
|
26 |
+
response = self.model.chat(
|
27 |
+
image=None,
|
28 |
+
msgs=msgs,
|
29 |
+
tokenizer=self.tokenizer
|
30 |
+
)
|
31 |
+
return response
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error analyzing image: {str(e)}"
|
34 |
+
|
35 |
+
@spaces.GPU()
|
36 |
+
def analyze_video_frames(self, video_path, frame_interval=30):
|
37 |
+
"""Extract and analyze frames from video"""
|
38 |
+
try:
|
39 |
+
# Load video
|
40 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
41 |
+
total_frames = len(vr)
|
42 |
+
|
43 |
+
# Extract frames at intervals
|
44 |
+
frame_indices = list(range(0, total_frames, frame_interval))
|
45 |
+
frames = vr.get_batch(frame_indices).asnumpy()
|
46 |
+
|
47 |
+
descriptions = []
|
48 |
+
for frame in frames:
|
49 |
+
# Convert frame to PIL Image
|
50 |
+
frame_pil = Image.fromarray(frame)
|
51 |
+
|
52 |
+
# Generate description
|
53 |
+
msgs = [{'role': 'user', 'content': [frame_pil, "Describe the main action in this scene."]}]
|
54 |
+
description = self.model.chat(
|
55 |
+
image=None,
|
56 |
+
msgs=msgs,
|
57 |
+
tokenizer=self.tokenizer
|
58 |
+
)
|
59 |
+
descriptions.append(description)
|
60 |
+
|
61 |
+
return descriptions
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
return [f"Error processing video: {str(e)}"]
|