Sigrid De los Santos
Remove remaining binary file for Hugging Face
9df4cc0
import os
import time
import sys
import json
import re
import itertools
import multiprocessing
import requests
import urllib.parse
from dotenv import load_dotenv
import pandas as pd
from bs4 import BeautifulSoup
from gui import gui
# Scraper tools:
import tweepy
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from searchtweets import load_credentials
# From src/
import requests_url
from requests_url import requests_get
from scrapers.yahoo import scrape_yahoo
from sentence_processing.split_sentence import split_sentence
from scrapers.cnbc import scrape_cnbc
from scrapers.market_screener import scrape_market_screener
from scrapers import url_encode
from scrapers.google.scrape_google import scrape_google
# TODO: Twitter API requests # https://twitter.com/bryan4665/
load_dotenv()
chrome_driver_path = '/usr/local/bin' # Replace this with the actual path to Chromedriver
os.environ["PATH"] += os.pathsep + chrome_driver_path
chrome_browser_path = '/Applications/Google Chrome.app/Contents/MacOS/Google Chrome' # Path to Chrome browser executable
twitter_api_key = os.getenv("TWITTER_API_KEY")
twitter_api_key_secret = os.getenv("TWITTER_API_KEY_SECRET")
twitter_access_token = os.getenv("TWITTER_ACCESS_TOKEN")
twitter_access_token_secret = os.getenv("TWITTER_ACCESS_TOKEN_SECRET")
twitter_bearer_token = os.getenv("TWITTER_BEARER_TOKEN")
# auth = tweepy.OAuth1UserHandler(twitter_api_key, twitter_api_key_secret, twitter_access_token, twitter_access_token_secret)
# api = tweepy.API(auth)
# scraping_by_url methods:
def similarity_score(a, b):
words_a = a.split()
words_b = b.split()
matching_words = 0
for word_a in words_a:
for word_b in words_b:
if word_a in word_b or word_b in word_a:
matching_words += 1
break
similarity = matching_words / min(len(words_a), len(words_b))
return similarity
def scraping_by_url(link, subject):
if "seekingalpha.com" in link:
print("Found 1 Seeking Alpha link:", link)
# requests.requests_get_for_seeking_alpha(link, subject)
if "xml" not in link:
print("Non-.xml case of Seeking Alpha")
url, subject = scrape_seeking_alpha_article_page(link, subject)
if url != "N/A":
return url, subject
elif "xml" in link:
print(".xml case of Seeking Alpha")
response = requests_get(link)
soup = BeautifulSoup(response.content, 'lxml-xml')
hyphenated_subject = "-".join([word.strip("'\"") for word in subject.split()])
print("Hyphenated subject:", hyphenated_subject)
# Find the first <loc> whose text contains the hyphenated subject
loc_element = soup.find('loc', string=re.compile(hyphenated_subject))
if loc_element:
link = loc_element.text
print("Found:", link, "from .xml")
url, subject = scrape_seeking_alpha_article_page(link, subject)
if url != "N/A":
return url, subject
print("Didn't find from .xml")
elif "reuters.com" in link:
print("Found 1 Reuters link:", link)
url, subject = scrape_reuters(subject)
if url != "N/A":
return url, subject
# elif "twitter.com" in link:
# print("Found 1 Twitter link:", link)
# url, subject = scrape_twitter(link, subject)
# if url != "N/A":
# return url, subject
elif "marketscreener.com" in link:
print("Found 1 Market Screener link:", link)
url, subject = scrape_market_screener.scrape_market_screen_article_page(link, subject)
if url != "N/A":
return url, subject
elif "bloomberg.com" in link:
print("Found 1 Bloomberg link:", link)
url, subject = scrape_bloomberg_article_page(link, subject)
if url != "N/A":
return url, subject
elif "yahoo.com" in link:
print("Found 1 Yahoo Finance link:", link)
url, subject = scrape_yahoo.scrape_yahoo_finance_article_page(link, subject)
elif "marketwatch.com" in link:
print("Found 1 MarketWatch link:", link)
url, subject = scrape_market_watch_article_page(link, subject)
# elif "zerohedge" in link:
# print("Found 1 ZeroHedge link:", link)
# url, subject = scrape_zero_hedge_article_page(link, subject)
elif "businesswire.com" in link:
print("Found 1 BusinessWire link:", link)
url, subject = scrape_business_wire_article_page(link, subject)
elif "cnbc.com" in link:
print("Found 1 CNBC link:", link)
url, subject = scrape_cnbc.scrape_cnbc_article_page(link, subject)
else:
print("Unrecognized link type: " + link)
return "N/A", subject
def scrape_bloomberg(subject):
try:
url_encoded_subject = url_encode.url_encode_string(subject)
full_url = 'https://www.bloomberg.com/search?query=' + url_encoded_subject + '&sort=relevance:asc&startTime=2015-04-01T01:01:01.001Z&' + '&page=' + str(
1)
print("Trying url " + full_url)
response = requests_get(full_url)
print("Response code: " + str(response.status_code))
soup = BeautifulSoup(response.content, 'html.parser')
links = [a['href'] for a in soup.select('a[class^="headline_"]') if 'href' in a.attrs]
print("Found " + str(len(links)) + " links", "these are: " + str(links))
return links
except Exception as e:
print("Error: " + str(e))
return []
def scrape_bloomberg_article_page(url, subject):
try:
response = requests_get(url)
soup = BeautifulSoup(response.content, 'html.parser')
headline = soup.select_one('h1', {'class': 'HedAndDek_headline-D19MOidHYLI-'}).text.strip()
bullet_point_texts = ""
bullet_points = soup.select('ul', {'class': 'HedAndDek_abstract-XX636-2bHQw-'})
if bullet_points:
lis = bullet_points.find_all('li')
if lis:
bullet_point_texts = " ".join([li.text.strip() for li in lis])
headline_plus_bullet_points = headline + ". " + bullet_point_texts
paragraph_texts = ""
paragraphs = soup.select_all('p', {'class': 'Paragraph_text-SqIsdNjh0t0-'})
for p in paragraphs:
if "Sign up" in p.text:
continue
else:
paragraph_texts = " ".join(p.text.strip())
headline_plus_bullet_points_plus_paragraphs = headline_plus_bullet_points + ". " + paragraph_texts
similarity = similarity_score(subject, headline_plus_bullet_points_plus_paragraphs)
if similarity > 0.8:
print("Found a Bloomberg article with similarity score:", similarity)
return url, headline_plus_bullet_points_plus_paragraphs
else:
print("Not relevant")
return "N/A", subject
except Exception as e:
print("Error: " + str(e))
return "N/A", subject
def scrape_reuters(subject):
try:
url_encoded_subject = url_encode.url_encode_string(subject)
full_url = 'https://www.reuters.com/search/news?blob=' + url_encoded_subject
print("Trying url " + full_url)
response = requests_get(full_url)
soup = BeautifulSoup(response.content, 'html.parser')
link_elements = soup.select('h3.search-result-title > a')
links = [link['href'] for link in link_elements]
print("Found " + str(len(links)))
for link in links:
full_link = "https://www.reuters.com" + link
print("Link:", full_link)
response = requests_get(full_link)
soup = BeautifulSoup(response.content, 'html.parser')
news_format = "type_1" # https://www.reuters.com/article/idUSKCN20K2SM
try:
headline_element = soup.select_one('h1[class^="Headline-headline-"]')
headline_text = headline_element.text.strip()
print("Headline:", headline_text)
except AttributeError:
headline_element = soup.select_one('h1[class^="text__text__"]')
headline_text = headline_element.text.strip()
print("Headline:", headline_text)
news_format = "type_2" # https://www.reuters.com/article/idUSKBN2KT0BX
similarity = similarity_score(subject, headline_text)
if similarity > 0.8:
if news_format == "type_1":
print("Relevant")
paragraph_elements = soup.select('p[class^="Paragraph-paragraph-"]')
paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
print("Context:", paragraph_text)
return full_link, subject + ". With full context: " + paragraph_text
elif news_format == "type_2":
print("Relevant")
paragraph_elements = soup.select('p[class^="text__text__"]')
paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
print("Context:", paragraph_text)
return full_link, subject + ". With full context: " + paragraph_text
else:
print("Not relevant")
print("Context not found in Reuters")
return "N/A", subject
except Exception as e:
print("Error in Reuters:", e)
return "N/A", subject
def scrape_market_watch_article_page(url, subject):
response = requests_get(url)
soup = BeautifulSoup(response.content, 'lxml-xml')
try:
if 'discover' in url: # https://www.marketwatch.com/discover?url=https%3A%2F%2Fwww.marketwatch.com%2Famp%2Fstory%2Fguid%2Fe1208ebc-4da6-11ea-833c-a3261b110a22&link=sfmw_tw#https://www.marketwatch.com/amp/story/guid/e1208ebc-4da6-11ea-833c-a3261b110a22?mod=dist_amp_social
body = soup.find('body', class_=lambda classes: classes and 'amp-mode-mouse' in classes.split())
if body:
article = body.find('article')
if article:
h1_text = article.find('h1').text.strip()
h2_text = article.find('h2').text.strip()
article_body_div = article.find('div', class_=lambda classes: classes and 'article__body' in classes.split())
article_body_subdivs = article_body_div.find_all('div')
article_paragraphs = [div.find_all('p') for div in article_body_subdivs]
article_paragraphs_texts = [p.text.strip() for p in article_paragraphs]
article_paragraphs_text = " ".join(article_paragraphs_texts)
else:
headline = soup.select_one('h1', {'class': 'article__headline'}).text.strip()
div_element = soup.find('div', class_=lambda x: x and x.startswith('article__body'))
paragraph_texts = div_element.find('p').text.strip()
print("Headline:", headline)
context = headline.join(paragraph_texts)
similarity = similarity_score(subject, context)
if similarity > 0.8:
print("Relevant")
print("Context:", context)
return url, subject + ". With full context: " + context
else:
print("Not relevant")
return "N/A", subject
except Exception as e:
print("Error in MarketWatch:", e)
return "N/A", subject
def scrape_business_wire_article_page(url, subject):
response = requests_get(url)
soup = BeautifulSoup(response.content, 'lxml-xml')
print("Business Wire, soup:", soup.text)
try:
headline_h1 = soup.find('h1', {'class': 'epi-fontLg bwalignc'}).text.strip()
print("Headline:", headline_h1)
headline = headline_h1.find('b').text.strip()
body_div = soup.find('div', {'class': 'bw-release-story'})
paragraph_texts = body_div.find('p').text.strip() # only select first paragraph
context = headline.join(paragraph_texts)
print("Headline:", headline)
similarity = similarity_score(subject, context)
if similarity > 0.8:
print("Relevant")
print("Context:", context)
return url, subject + ". With full context: " + context
else:
print("Not relevant")
return "N/A", subject
except Exception as e:
print("Error in Business Wire:", e)
return "N/A", subject
def scrape_wsj(subject):
try:
url_encoded_subject = url_encode.url_encode_string(subject)
full_url = 'https://www.wsj.com/search?query=' + url_encoded_subject + '&operator=OR&sort=relevance&duration=1y&startDate=2015%2F01%2F01&endDate=2016%2F01%2F01'
print("Trying url " + full_url)
response = requests_get(full_url)
soup = BeautifulSoup(response.content, 'html.parser')
link_elements = soup.select('h3[class^="WSJTheme--headline"] a')
links = [link['href'] for link in link_elements]
print("Found " + str(len(links)))
for link in links:
full_link = link
print("Link:", full_link)
response = requests_get(full_link)
soup = BeautifulSoup(response.content, 'html.parser')
news_format = "type_1" # https://www.reuters.com/article/idUSKCN20K2SM
# try:
headline_element = soup.select_one('h1[class*="StyledHeadline"]')
headline_text = headline_element.text.strip()
print("Headline:", headline_text)
# except AttributeError:
# headline_element = soup.select_one('h1[class^="text__text__"]')
# headline_text = headline_element.text.strip()
# print("Headline:", headline_text)
# news_format = "type_2" # https://www.reuters.com/article/idUSKBN2KT0BX
similarity = similarity_score(subject, headline_text)
if similarity > 0.8:
# if news_format == "type_1":
print("Relevant")
paragraph_elements = soup.select('p[class^="Paragraph-paragraph-"]')
paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
print("Context:", paragraph_text)
return full_link, subject + ". With full context: " + paragraph_text
# elif news_format == "type_2":
# print("Relevant")
# paragraph_elements = soup.select('p[class^="text__text__"]')
# paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
# print("Context:", paragraph_text)
# return full_link, subject + ". With full context: " + paragraph_text
else:
print("Not relevant")
print("Context not found in WSJ")
return "N/A", subject
except Exception as e:
print("Error in WSJ:", e)
return "N/A", subject
def scrape_seeking_alpha(subject):
try:
url_encoded_subject = url_encode.url_encode_string(subject)
full_url = 'https://seekingalpha.com/search?q=' + url_encoded_subject + '&tab=headlines'
print("Trying url " + full_url)
response = requests_get(full_url)
# JSONN parsing method
# json_response = html_to_json.convert(response.content)
# print("Response: ", response.content)
# print("JSON: ", json_response)
# response_json = json.loads(json_response)
# Find all the <a> tags within the specified hierarchy
# links = []
#
# div_main = response_json['div.main']
# if div_main:
# div_article = div_main['div.article']
# if div_article:
# divs = div_article['div']
# for div in divs:
# if 'a' in div:
# links.append(div['a']['href'])
# BeautifulSoup method
soup = BeautifulSoup(response.content, 'html5lib')
# print("Seeking alpha's Soup: ", soup)
divs = soup.find_all('div', {'class': 'mt-z V-gQ V-g5 V-hj'})
links = []
for div in divs:
a = div.find('a', {'class': 'mt-X R-dW R-eB R-fg R-fZ V-gT V-g9 V-hj V-hY V-ib V-ip'})
link = a.get('href')
links = links.append(link)
print("Found " + str(len(links)) + " links")
for link in links:
url, subject = scrape_seeking_alpha_article_page(link, subject)
if url != "N/A":
return url, subject
print("Context not found in Seeking Alpha")
return "N/A", subject
except Exception as e:
print("Error in Seeking Alpha:", e)
return "N/A", subject
def scrape_seeking_alpha_article_page(url, subject):
try:
response = requests_get(url)
soup = BeautifulSoup(response.content, 'lxml-xml')
if "symbol" in url:
print("Symbol page of Seeking Alpha")
print("Response status code: ", response.status_code)
print("Response content: ", response.content)
a_titles = soup.find('a', {'class': 'sa-v'})
for a_title in a_titles:
title = a_title.text.strip()
if similarity_score(subject, title) > 0.8:
print("Found article: ", title)
print("Relevant")
return scrape_seeking_alpha_article_page(a_title['href'], subject)
if "news" in url:
print("News page of Seeking Alpha")
div = soup.find('div', {'class': 'lm-ls'})
ul = div.find('ul')
if ul: # https://seekingalpha.com/news/3540034-dell-hpe-targets-trimmed-on-compute-headwinds
lis = ul.find_all('li')
paragraph_text = ' '.join([li.text.strip() for li in lis])
else: # https://seekingalpha.com/news/3988329-commscope-stock-dips-after-deutsche-bank-cuts-to-hold
print("Hidden Seeking Alpha article case")
ps = div.find_all('p')
paragraph_text = ' '.join([p.text.strip() for p in ps])
print("Context:", paragraph_text)
return url, subject + ". With full context: " + paragraph_text
else:
print("Not relevant")
return "N/A", subject
except Exception as e:
print("Exception in scrape_seeking_alpha_article_page:", e)
return "N/A", subject
# def scrape_zero_hedge_article_page(url, subject):
def scrape_cnbc_article_page(url, subject):
try:
response = requests_get(url)
soup = BeautifulSoup(response.content, 'lxml-xml')
headline_h1 = soup.find('h1', {'class': 'ArticleHeader-headline'})
keypoints_div = soup.find('div', {'class': 'RenderKeyPoints-list'})
if keypoints_div:
keypoints_subdiv = keypoints_div.find('div', {'class': 'group'})
keypoints = keypoints_subdiv.find('ul').find_all('li')
keypoints_text = ' '.join([keypoint.text.strip() for keypoint in keypoints])
else:
keypoints_text = ""
context = headline_h1.text.strip() + " " + keypoints_text
similarity = similarity_score(subject, context)
if similarity > 0.8:
print("Relevant")
print("Context:", context)
return url, subject + ". With full context: " + context
else:
print("Not relevant")
return "N/A", subject
except Exception as e:
print("Exception in scrape_cnbc_article_page:", e)
return "N/A", subject
# def scrape_twitter(url, subject):
# options = Options()
# options.add_argument('--headless') # Run the browser in headless mode (without GUI)
# options.add_argument('--disable-gpu') # Disable GPU usage to avoid issues in headless mode
# options.add_argument('--no-sandbox') # Disable sandboxing for headless mode in some environments
# driver = webdriver.Chrome(options=options)
#
# try:
# driver.get(url)
# time.sleep(5) # Wait for the JavaScript content to load (adjust the waiting time as needed)
# content = driver.page_source
# return content
# except Exception as e:
# print("Error: " + str(e))
# return "N/A", subject
# finally:
# driver.quit()
def scrape_twitter(url, subject):
try:
if "i/web/status/" in url:
tweet_id = get_tweet_id(url)
endpoint_url = f"https://api.twitter.com/2/tweets?ids={tweet_id}"
headers = {
"User-Agent": "v2TweetLookupPython",
"Authorization": f"Bearer {twitter_bearer_token}" # Replace 'token' with your actual bearer token
}
response = requests.get(endpoint_url, headers=headers)
if response.status_code == 200:
print("Tweet text:", response.json)
similarity = similarity_score(subject, tweet.full_text)
if similarity > 0.75:
print("Relevant")
return url, subject + ". With full context: " + tweet.full_text
else:
print("Error in scrape_twitter", response)
return "N/A", subject
except Exception as e:
print("Exception in scrape_twitter:", e)
return "N/A", subject
def get_tweet_id(url):
match = re.search(r"status/(\d+)", url)
if match:
return match.group(1)
return None
def scrape_twitter_through_website(url, subject): # not feasible
try:
response = requests_get(url)
# print("Twitter GET response: ", response.content)
soup = BeautifulSoup(response.content, 'lxml-xml')
# print(soup.text)
if 'status' in url:
twitter_post_div = soup.select('div', {'class': 'css-901oao r-18jsvk2 r-37j5jr r-1inkyih r-16dba41 r-135wba7 r-bcqeeo r-bnwqim r-qvutc0'})
twitter_post_spans = twitter_post_div.find_all('span')
twitter_post_text = ""
for twitter_post_span in twitter_post_spans:
twitter_texts = twitter_post_span.find_all('span')
for twitter_text in twitter_texts:
twitter_post_text += twitter_text.text
print("Twitter text:", twitter_post_text)
else: # https://twitter.com/bryan4665/
print("Identified as Twitter personal page")
twitter_format = 'personal_page'
twitter_post_text = soup.find('span', {
'class': 'css-901oao css-16my406 r-poiln3 r-bcqeeo r-qvutc0'})
twitter_post_text = twitter_post_text.text.strip()
print("Twitter text:", twitter_post_text)
soup.find('a', {'class': 'css-4rbku5 css-18t94o4 css-901oao r-14j79pv r-1loqt21 r-xoduu5 r-1q142lx r-1w6e6rj r-37j5jr r-a023e6 r-16dba41 r-9aw3ui r-rjixqe r-bcqeeo r-3s2u2q r-qvutc0'})
similarity = similarity_score(subject, twitter_post_text)
if similarity > 0.8:
print("Relevant")
if len(twitter_post_text) - len(subject) > 5: # additional context:
return url, subject + ". With full context: " + twitter_post_text
else: # case of twitter post interpreting a link
print("Twitter post interpreting a link")
# Case 1
for twitter_post_span in twitter_post_spans: # case of link embedded in twitter post
as_maybe_containing_link = twitter_post_span.find_all('a')
for a_maybe_containing_link in as_maybe_containing_link:
link = a_maybe_containing_link['href']
if link:
print("Link found in Twitter post text")
return scraping_by_url(link, subject)
# Case 2
link = soup.find('a', {'class': 'css-4rbku5 css-18t94o4 css-1dbjc4n r-1loqt21 r-18u37iz r-16y2uox r-1wtj0ep r-1ny4l3l r-o7ynqc r-6416eg'})['href']
link_domain_div = soup.find('div', {'class': 'css-901oao css-1hf3ou5 r-14j79pv r-37j5jr r-a023e6 r-16dba41 r-rjixqe r-bcqeeo r-qvutc0'}) # domain text
if link_domain_div:
if "twitter" in link_domain_div:
return scraping_by_url(link, subject)
elif "bloomberg" in link_domain_div:
return scraping_by_url(link, subject)
elif "reuters" in link_domain_div:
return scraping_by_url(link, subject)
elif "seekingalpha" in link_domain_div:
return scraping_by_url(link, subject)
else:
print("Not relevant")
return "N/A", subject
except Exception as e:
print("Exception in scrape_seeking_alpha_article_page:", e)
return "N/A", subject
def webdrive_twitter(url):
chrome_options = webdriver.ChromeOptions()
chrome_options.binary_location = chrome_browser_path
driver = webdriver.Chrome(options=chrome_options)
try:
driver.get(url)
time.sleep(5) # Wait for the JavaScript content to load (adjust the waiting time as needed)
content = driver.page_source
return content
except Exception as e:
print("Error: " + str(e))
return None
finally:
driver.quit()
# Function that handles classification of sentences using OpenAI and scraping_by_url of news websites
def select_column_and_classify():
# Research contexts for sentences
try:
context_choice = gui.ynbox("Context Research", "Do you want to research the context for this news?")
process_existing_file = gui.ynbox("Context Research", "Do you want process an existing file?")
if context_choice:
file_path = gui.fileopenbox("Select the CSV file containing news for context research", filetypes=["*.csv"])
df = pd.read_csv(file_path)
column_names = df.columns.tolist()
if not process_existing_file:
df["link"] = "" # Create a new column named "link"
df["contextualized_sentence"] = "" # Create a new column named "contextualized sentence"
if file_path:
sentence_column = gui.buttonbox("Column Selection", "Select the column for target sentence in the CSV:",
choices=column_names)
if not sentence_column:
raise ValueError("Invalid context selected selection")
counter = 0 # Counter variable to track the number of rows processed
row_index_input = gui.enterbox("Enter the row index to classify", "Row Index Input", 1)
if row_index_input is None or not row_index_input.isdigit() or int(row_index_input) >= len(df):
row_index = 1 # Set a default starting index
else:
row_index = int(row_index_input)
print("loaded file as df: ", df)
for row_index, row in itertools.islice(df.iterrows(), row_index, None):
# If role is not empty or N/A or has the same sentence as "contextualized_sentence", means context is added, then skip
# if process_existing_file and row["link"] != "N/A" and not pd.isnull(row["link"]) and row[sentence_column] != row["contextualized_sentence"]:
# continue
target_sentence = row[sentence_column]
ticker, remaining_sentence, link = split_sentence(target_sentence)
if link:
print("Financial statement:", remaining_sentence, "Link:", link)
url, contextualized_sentence = scraping_by_url(link, remaining_sentence)
if url == 'N/A':
url, contextualized_sentence = scrape_google(remaining_sentence)
else:
print("Financial statement:", remaining_sentence)
url, contextualized_sentence = scrape_google(remaining_sentence)
df.at[row_index, "link"] = url
df.at[row_index, "contextualized_sentence"] = contextualized_sentence
counter += 1
# Save the DataFrame to a CSV file every 10 rows
if counter % 10 == 0:
output_file_path = os.path.splitext(file_path)[0] + "_scraped.csv"
df.to_csv(output_file_path, index=False)
print("Processed rows:", counter)
print("DataFrame saved to:", output_file_path)
# Save the final DataFrame to a CSV file
output_file_path = os.path.splitext(file_path)[0] + "_scraped.csv"
df.to_csv(output_file_path, index=False)
gui.msgbox("scraping_by_url Complete")
except Exception as e:
gui.exceptionbox(str(e))
print("Error occurred at row index:", row_index)
output_file_path = os.path.splitext(file_path)[0] + "_scraped.csv"
df.to_csv(output_file_path, index=False)
def process_row(row_index, row, sentence_column):
# Process each row here
target_sentence = row[sentence_column]
ticker, remaining_sentence, link = split_sentence(target_sentence)
if link:
print("Financial statement:", remaining_sentence, "Link:", link)
else:
print("Financial statement:", remaining_sentence)
# Try all
url, contextualized_sentence = scrape_google(remaining_sentence)
if url == "N/A":
url, contextualized_sentence = scrape_reuters(remaining_sentence)
df.at[row_index, "link"] = url
df.at[row_index, "contextualized_sentence"] = contextualized_sentence
return row_index, row
if __name__ == '__main__':
select_column_and_classify()