File size: 30,152 Bytes
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import os
import time
import sys
import json
import re
import itertools
import multiprocessing
import requests
import urllib.parse
from dotenv import load_dotenv
import pandas as pd
from bs4 import BeautifulSoup
from gui import gui

# Scraper tools:
import tweepy
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from searchtweets import load_credentials

# From src/
import requests_url
from requests_url import requests_get
from scrapers.yahoo import scrape_yahoo
from sentence_processing.split_sentence import split_sentence
from scrapers.cnbc import scrape_cnbc
from scrapers.market_screener import scrape_market_screener
from scrapers import url_encode
from scrapers.google.scrape_google import scrape_google

# TODO: Twitter API requests # https://twitter.com/bryan4665/


load_dotenv()

chrome_driver_path = '/usr/local/bin'  # Replace this with the actual path to Chromedriver
os.environ["PATH"] += os.pathsep + chrome_driver_path
chrome_browser_path = '/Applications/Google Chrome.app/Contents/MacOS/Google Chrome'  # Path to Chrome browser executable

twitter_api_key = os.getenv("TWITTER_API_KEY")
twitter_api_key_secret = os.getenv("TWITTER_API_KEY_SECRET")
twitter_access_token = os.getenv("TWITTER_ACCESS_TOKEN")
twitter_access_token_secret = os.getenv("TWITTER_ACCESS_TOKEN_SECRET")
twitter_bearer_token = os.getenv("TWITTER_BEARER_TOKEN")
# auth = tweepy.OAuth1UserHandler(twitter_api_key, twitter_api_key_secret, twitter_access_token, twitter_access_token_secret)
# api = tweepy.API(auth)

# scraping_by_url methods:

def similarity_score(a, b):
    words_a = a.split()
    words_b = b.split()
    matching_words = 0

    for word_a in words_a:
        for word_b in words_b:
            if word_a in word_b or word_b in word_a:
                matching_words += 1
                break

    similarity = matching_words / min(len(words_a), len(words_b))
    return similarity

def scraping_by_url(link, subject):
    if "seekingalpha.com" in link:
        print("Found 1 Seeking Alpha link:", link)
        # requests.requests_get_for_seeking_alpha(link, subject)
        if "xml" not in link:
            print("Non-.xml case of Seeking Alpha")
            url, subject = scrape_seeking_alpha_article_page(link, subject)
            if url != "N/A":
                return url, subject
        elif "xml" in link:
            print(".xml case of Seeking Alpha")
            response = requests_get(link)
            soup = BeautifulSoup(response.content, 'lxml-xml')
            hyphenated_subject = "-".join([word.strip("'\"") for word in subject.split()])
            print("Hyphenated subject:", hyphenated_subject)

            # Find the first <loc> whose text contains the hyphenated subject
            loc_element = soup.find('loc', string=re.compile(hyphenated_subject))
            if loc_element:
                link = loc_element.text
                print("Found:", link, "from .xml")
                url, subject = scrape_seeking_alpha_article_page(link, subject)
                if url != "N/A":
                    return url, subject
            print("Didn't find from .xml")
    elif "reuters.com" in link:
        print("Found 1 Reuters link:", link)
        url, subject = scrape_reuters(subject)
        if url != "N/A":
            return url, subject
    # elif "twitter.com" in link:
    #     print("Found 1 Twitter link:", link)
    #     url, subject = scrape_twitter(link, subject)
    #     if url != "N/A":
    #         return url, subject
    elif "marketscreener.com" in link:
        print("Found 1 Market Screener link:", link)
        url, subject = scrape_market_screener.scrape_market_screen_article_page(link, subject)
        if url != "N/A":
            return url, subject
    elif "bloomberg.com" in link:
        print("Found 1 Bloomberg link:", link)
        url, subject = scrape_bloomberg_article_page(link, subject)
        if url != "N/A":
            return url, subject
    elif "yahoo.com" in link:
        print("Found 1 Yahoo Finance link:", link)
        url, subject = scrape_yahoo.scrape_yahoo_finance_article_page(link, subject)
    elif "marketwatch.com" in link:
        print("Found 1 MarketWatch link:", link)
        url, subject = scrape_market_watch_article_page(link, subject)
    # elif "zerohedge" in link:
    #     print("Found 1 ZeroHedge link:", link)
    #     url, subject = scrape_zero_hedge_article_page(link, subject)
    elif "businesswire.com" in link:
        print("Found 1 BusinessWire link:", link)
        url, subject = scrape_business_wire_article_page(link, subject)
    elif "cnbc.com" in link:
        print("Found 1 CNBC link:", link)
        url, subject = scrape_cnbc.scrape_cnbc_article_page(link, subject)
    else:
        print("Unrecognized link type: " + link)

    return "N/A", subject



def scrape_bloomberg(subject):
    try:
        url_encoded_subject = url_encode.url_encode_string(subject)

        full_url = 'https://www.bloomberg.com/search?query=' + url_encoded_subject + '&sort=relevance:asc&startTime=2015-04-01T01:01:01.001Z&' + '&page=' + str(
            1)
        print("Trying url " + full_url)
        response = requests_get(full_url)
        print("Response code: " + str(response.status_code))
        soup = BeautifulSoup(response.content, 'html.parser')
        links = [a['href'] for a in soup.select('a[class^="headline_"]') if 'href' in a.attrs]
        print("Found " + str(len(links)) + " links", "these are: " + str(links))
        return links
    except Exception as e:
        print("Error: " + str(e))
        return []


def scrape_bloomberg_article_page(url, subject):
    try:
        response = requests_get(url)
        soup = BeautifulSoup(response.content, 'html.parser')
        headline = soup.select_one('h1', {'class': 'HedAndDek_headline-D19MOidHYLI-'}).text.strip()

        bullet_point_texts = ""
        bullet_points = soup.select('ul', {'class': 'HedAndDek_abstract-XX636-2bHQw-'})
        if bullet_points:
            lis = bullet_points.find_all('li')
            if lis:
                bullet_point_texts = " ".join([li.text.strip() for li in lis])
        headline_plus_bullet_points = headline + ". " + bullet_point_texts

        paragraph_texts = ""
        paragraphs = soup.select_all('p', {'class': 'Paragraph_text-SqIsdNjh0t0-'})
        for p in paragraphs:
            if "Sign up" in p.text:
                continue
            else:
                paragraph_texts = " ".join(p.text.strip())
        headline_plus_bullet_points_plus_paragraphs = headline_plus_bullet_points + ". " + paragraph_texts

        similarity = similarity_score(subject, headline_plus_bullet_points_plus_paragraphs)
        if similarity > 0.8:
            print("Found a Bloomberg article with similarity score:", similarity)
            return url, headline_plus_bullet_points_plus_paragraphs
        else:
            print("Not relevant")
            return "N/A", subject
    except Exception as e:
        print("Error: " + str(e))
        return "N/A", subject

def scrape_reuters(subject):
    try:
        url_encoded_subject = url_encode.url_encode_string(subject)

        full_url = 'https://www.reuters.com/search/news?blob=' + url_encoded_subject
        print("Trying url " + full_url)
        response = requests_get(full_url)
        soup = BeautifulSoup(response.content, 'html.parser')
        link_elements = soup.select('h3.search-result-title > a')
        links = [link['href'] for link in link_elements]
        print("Found " + str(len(links)))

        for link in links:
            full_link = "https://www.reuters.com" + link
            print("Link:", full_link)

            response = requests_get(full_link)
            soup = BeautifulSoup(response.content, 'html.parser')

            news_format = "type_1" # https://www.reuters.com/article/idUSKCN20K2SM
            try:
                headline_element = soup.select_one('h1[class^="Headline-headline-"]')
                headline_text = headline_element.text.strip()
                print("Headline:", headline_text)
            except AttributeError:
                headline_element = soup.select_one('h1[class^="text__text__"]')
                headline_text = headline_element.text.strip()
                print("Headline:", headline_text)
                news_format = "type_2" # https://www.reuters.com/article/idUSKBN2KT0BX

            similarity = similarity_score(subject, headline_text)
            if similarity > 0.8:
                if news_format == "type_1":
                    print("Relevant")
                    paragraph_elements = soup.select('p[class^="Paragraph-paragraph-"]')
                    paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
                    print("Context:", paragraph_text)
                    return full_link, subject + ". With full context: " + paragraph_text
                elif news_format == "type_2":
                    print("Relevant")
                    paragraph_elements = soup.select('p[class^="text__text__"]')
                    paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
                    print("Context:", paragraph_text)
                    return full_link, subject + ". With full context: " + paragraph_text
            else:
                print("Not relevant")

        print("Context not found in Reuters")
        return "N/A", subject
    except Exception as e:
        print("Error in Reuters:", e)
        return "N/A", subject

def scrape_market_watch_article_page(url, subject):
    response = requests_get(url)
    soup = BeautifulSoup(response.content, 'lxml-xml')
    try:
        if 'discover' in url: # https://www.marketwatch.com/discover?url=https%3A%2F%2Fwww.marketwatch.com%2Famp%2Fstory%2Fguid%2Fe1208ebc-4da6-11ea-833c-a3261b110a22&link=sfmw_tw#https://www.marketwatch.com/amp/story/guid/e1208ebc-4da6-11ea-833c-a3261b110a22?mod=dist_amp_social
            body = soup.find('body', class_=lambda classes: classes and 'amp-mode-mouse' in classes.split())
            if body:
                article = body.find('article')
                if article:
                    h1_text = article.find('h1').text.strip()
                    h2_text = article.find('h2').text.strip()
                    article_body_div = article.find('div', class_=lambda classes: classes and 'article__body' in classes.split())
                    article_body_subdivs = article_body_div.find_all('div')
                    article_paragraphs = [div.find_all('p') for div in article_body_subdivs]
                    article_paragraphs_texts = [p.text.strip() for p in article_paragraphs]
                    article_paragraphs_text = " ".join(article_paragraphs_texts)
        else:
            headline = soup.select_one('h1', {'class': 'article__headline'}).text.strip()
            div_element = soup.find('div', class_=lambda x: x and x.startswith('article__body'))
            paragraph_texts = div_element.find('p').text.strip()
            print("Headline:", headline)
            context = headline.join(paragraph_texts)
            similarity = similarity_score(subject, context)
        if similarity > 0.8:
            print("Relevant")
            print("Context:", context)
            return url, subject + ". With full context: " + context
        else:
            print("Not relevant")
            return "N/A", subject
    except Exception as e:
        print("Error in MarketWatch:", e)
        return "N/A", subject

def scrape_business_wire_article_page(url, subject):
    response = requests_get(url)
    soup = BeautifulSoup(response.content, 'lxml-xml')
    print("Business Wire, soup:", soup.text)
    try:
        headline_h1 = soup.find('h1', {'class': 'epi-fontLg bwalignc'}).text.strip()
        print("Headline:", headline_h1)
        headline = headline_h1.find('b').text.strip()
        body_div = soup.find('div', {'class': 'bw-release-story'})
        paragraph_texts = body_div.find('p').text.strip() # only select first paragraph
        context = headline.join(paragraph_texts)
        print("Headline:", headline)
        similarity = similarity_score(subject, context)
        if similarity > 0.8:
            print("Relevant")
            print("Context:", context)
            return url, subject + ". With full context: " + context
        else:
            print("Not relevant")
            return "N/A", subject
    except Exception as e:
        print("Error in Business Wire:", e)
        return "N/A", subject


def scrape_wsj(subject):
    try:
        url_encoded_subject = url_encode.url_encode_string(subject)

        full_url = 'https://www.wsj.com/search?query=' + url_encoded_subject + '&operator=OR&sort=relevance&duration=1y&startDate=2015%2F01%2F01&endDate=2016%2F01%2F01'
        print("Trying url " + full_url)
        response = requests_get(full_url)
        soup = BeautifulSoup(response.content, 'html.parser')
        link_elements = soup.select('h3[class^="WSJTheme--headline"] a')
        links = [link['href'] for link in link_elements]
        print("Found " + str(len(links)))

        for link in links:
            full_link = link
            print("Link:", full_link)

            response = requests_get(full_link)
            soup = BeautifulSoup(response.content, 'html.parser')

            news_format = "type_1" # https://www.reuters.com/article/idUSKCN20K2SM
            # try:
            headline_element = soup.select_one('h1[class*="StyledHeadline"]')
            headline_text = headline_element.text.strip()
            print("Headline:", headline_text)
            # except AttributeError:
            #     headline_element = soup.select_one('h1[class^="text__text__"]')
            #     headline_text = headline_element.text.strip()
            #     print("Headline:", headline_text)
            #     news_format = "type_2" # https://www.reuters.com/article/idUSKBN2KT0BX

            similarity = similarity_score(subject, headline_text)
            if similarity > 0.8:
                # if news_format == "type_1":
                print("Relevant")
                paragraph_elements = soup.select('p[class^="Paragraph-paragraph-"]')
                paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
                print("Context:", paragraph_text)
                return full_link, subject + ". With full context: " + paragraph_text
                # elif news_format == "type_2":
                #     print("Relevant")
                #     paragraph_elements = soup.select('p[class^="text__text__"]')
                #     paragraph_text = ' '.join([p.text.strip() for p in paragraph_elements])
                #     print("Context:", paragraph_text)
                #     return full_link, subject + ". With full context: " + paragraph_text
            else:
                print("Not relevant")

        print("Context not found in WSJ")
        return "N/A", subject
    except Exception as e:
        print("Error in WSJ:", e)
        return "N/A", subject

def scrape_seeking_alpha(subject):
    try:
        url_encoded_subject = url_encode.url_encode_string(subject)
        full_url = 'https://seekingalpha.com/search?q=' + url_encoded_subject + '&tab=headlines'
        print("Trying url " + full_url)

        response = requests_get(full_url)

        # JSONN parsing method
        # json_response = html_to_json.convert(response.content)
        # print("Response: ", response.content)
        # print("JSON: ", json_response)
        # response_json = json.loads(json_response)
        # Find all the <a> tags within the specified hierarchy
        # links = []
        #
        # div_main = response_json['div.main']
        # if div_main:
        #     div_article = div_main['div.article']
        #     if div_article:
        #         divs = div_article['div']
        #         for div in divs:
        #             if 'a' in div:
        #                 links.append(div['a']['href'])

        # BeautifulSoup method
        soup = BeautifulSoup(response.content, 'html5lib')
        # print("Seeking alpha's Soup: ", soup)
        divs = soup.find_all('div', {'class': 'mt-z V-gQ V-g5 V-hj'})
        links = []
        for div in divs:
            a = div.find('a', {'class': 'mt-X R-dW R-eB R-fg R-fZ V-gT V-g9 V-hj V-hY V-ib V-ip'})
            link = a.get('href')
            links = links.append(link)
        print("Found " + str(len(links)) + " links")

        for link in links:
            url, subject = scrape_seeking_alpha_article_page(link, subject)
            if url != "N/A":
                return url, subject

        print("Context not found in Seeking Alpha")
        return "N/A", subject
    except Exception as e:
        print("Error in Seeking Alpha:", e)
        return "N/A", subject

def scrape_seeking_alpha_article_page(url, subject):
    try:
        response = requests_get(url)
        soup = BeautifulSoup(response.content, 'lxml-xml')

        if "symbol" in url:
            print("Symbol page of Seeking Alpha")
            print("Response status code: ", response.status_code)
            print("Response content: ", response.content)
            a_titles = soup.find('a', {'class': 'sa-v'})
            for a_title in a_titles:
                title = a_title.text.strip()
                if similarity_score(subject, title) > 0.8:
                    print("Found article: ", title)
                    print("Relevant")
                    return scrape_seeking_alpha_article_page(a_title['href'], subject)

        if "news" in url:
            print("News page of Seeking Alpha")
            div = soup.find('div', {'class': 'lm-ls'})
            ul = div.find('ul')
            if ul: # https://seekingalpha.com/news/3540034-dell-hpe-targets-trimmed-on-compute-headwinds
                lis = ul.find_all('li')
                paragraph_text = ' '.join([li.text.strip() for li in lis])
            else: # https://seekingalpha.com/news/3988329-commscope-stock-dips-after-deutsche-bank-cuts-to-hold
                print("Hidden Seeking Alpha article case")
                ps = div.find_all('p')
                paragraph_text = ' '.join([p.text.strip() for p in ps])
            print("Context:", paragraph_text)
            return url, subject + ". With full context: " + paragraph_text
        else:
            print("Not relevant")
            return "N/A", subject
    except Exception as e:
        print("Exception in scrape_seeking_alpha_article_page:", e)
        return "N/A", subject


# def scrape_zero_hedge_article_page(url, subject):

def scrape_cnbc_article_page(url, subject):
    try:
        response = requests_get(url)
        soup = BeautifulSoup(response.content, 'lxml-xml')
        headline_h1 = soup.find('h1', {'class': 'ArticleHeader-headline'})
        keypoints_div = soup.find('div', {'class': 'RenderKeyPoints-list'})
        if keypoints_div:
            keypoints_subdiv = keypoints_div.find('div', {'class': 'group'})
            keypoints = keypoints_subdiv.find('ul').find_all('li')
            keypoints_text = ' '.join([keypoint.text.strip() for keypoint in keypoints])
        else:
            keypoints_text = ""

        context = headline_h1.text.strip() + " " + keypoints_text
        similarity = similarity_score(subject, context)
        if similarity > 0.8:
            print("Relevant")
            print("Context:", context)
            return url, subject + ". With full context: " + context
        else:
            print("Not relevant")
            return "N/A", subject

    except Exception as e:
        print("Exception in scrape_cnbc_article_page:", e)
        return "N/A", subject


# def scrape_twitter(url, subject):
#     options = Options()
#     options.add_argument('--headless')  # Run the browser in headless mode (without GUI)
#     options.add_argument('--disable-gpu')  # Disable GPU usage to avoid issues in headless mode
#     options.add_argument('--no-sandbox')  # Disable sandboxing for headless mode in some environments
#     driver = webdriver.Chrome(options=options)
#
#     try:
#         driver.get(url)
#         time.sleep(5)  # Wait for the JavaScript content to load (adjust the waiting time as needed)
#         content = driver.page_source
#         return content
#     except Exception as e:
#         print("Error: " + str(e))
#         return "N/A", subject
#     finally:
#         driver.quit()

def scrape_twitter(url, subject):
    try:
        if "i/web/status/" in url:
            tweet_id = get_tweet_id(url)
            endpoint_url = f"https://api.twitter.com/2/tweets?ids={tweet_id}"
            headers = {
                "User-Agent": "v2TweetLookupPython",
                "Authorization": f"Bearer {twitter_bearer_token}"  # Replace 'token' with your actual bearer token
            }
            response = requests.get(endpoint_url, headers=headers)


            if response.status_code == 200:
                print("Tweet text:", response.json)
                similarity = similarity_score(subject, tweet.full_text)
                if similarity > 0.75:
                    print("Relevant")
                    return url, subject + ". With full context: " + tweet.full_text
            else:
                print("Error in scrape_twitter", response)
                return "N/A", subject
    except Exception as e:
        print("Exception in scrape_twitter:", e)
        return "N/A", subject

def get_tweet_id(url):
    match = re.search(r"status/(\d+)", url)
    if match:
        return match.group(1)
    return None

def scrape_twitter_through_website(url, subject): # not feasible
    try:
        response = requests_get(url)
        # print("Twitter GET response: ", response.content)
        soup = BeautifulSoup(response.content, 'lxml-xml')
        # print(soup.text)

        if 'status' in url:
            twitter_post_div = soup.select('div', {'class': 'css-901oao r-18jsvk2 r-37j5jr r-1inkyih r-16dba41 r-135wba7 r-bcqeeo r-bnwqim r-qvutc0'})
            twitter_post_spans = twitter_post_div.find_all('span')
            twitter_post_text = ""
            for twitter_post_span in twitter_post_spans:
                twitter_texts = twitter_post_span.find_all('span')
                for twitter_text in twitter_texts:
                    twitter_post_text += twitter_text.text
            print("Twitter text:", twitter_post_text)
        else: # https://twitter.com/bryan4665/
            print("Identified as Twitter personal page")
            twitter_format = 'personal_page'
            twitter_post_text = soup.find('span', {
                'class': 'css-901oao css-16my406 r-poiln3 r-bcqeeo r-qvutc0'})
            twitter_post_text = twitter_post_text.text.strip()
            print("Twitter text:", twitter_post_text)
            soup.find('a', {'class': 'css-4rbku5 css-18t94o4 css-901oao r-14j79pv r-1loqt21 r-xoduu5 r-1q142lx r-1w6e6rj r-37j5jr r-a023e6 r-16dba41 r-9aw3ui r-rjixqe r-bcqeeo r-3s2u2q r-qvutc0'})

        similarity = similarity_score(subject, twitter_post_text)
        if similarity > 0.8:
            print("Relevant")

            if len(twitter_post_text) - len(subject) > 5: # additional context:
                return url, subject + ". With full context: " + twitter_post_text
            else: # case of twitter post interpreting a link
                print("Twitter post interpreting a link")
                # Case 1
                for twitter_post_span in twitter_post_spans: # case of link embedded in twitter post
                    as_maybe_containing_link = twitter_post_span.find_all('a')
                    for a_maybe_containing_link in as_maybe_containing_link:
                        link = a_maybe_containing_link['href']
                        if link:
                            print("Link found in Twitter post text")
                            return scraping_by_url(link, subject)

                # Case 2
                link = soup.find('a', {'class': 'css-4rbku5 css-18t94o4 css-1dbjc4n r-1loqt21 r-18u37iz r-16y2uox r-1wtj0ep r-1ny4l3l r-o7ynqc r-6416eg'})['href']
                link_domain_div = soup.find('div', {'class': 'css-901oao css-1hf3ou5 r-14j79pv r-37j5jr r-a023e6 r-16dba41 r-rjixqe r-bcqeeo r-qvutc0'}) # domain text
                if link_domain_div:
                    if "twitter" in link_domain_div:
                        return scraping_by_url(link, subject)
                    elif "bloomberg" in link_domain_div:
                        return scraping_by_url(link, subject)
                    elif "reuters" in link_domain_div:
                        return scraping_by_url(link, subject)
                    elif "seekingalpha" in link_domain_div:
                        return scraping_by_url(link, subject)
        else:
            print("Not relevant")
            return "N/A", subject
    except Exception as e:
        print("Exception in scrape_seeking_alpha_article_page:", e)
        return "N/A", subject

def webdrive_twitter(url):
    chrome_options = webdriver.ChromeOptions()
    chrome_options.binary_location = chrome_browser_path
    driver = webdriver.Chrome(options=chrome_options)

    try:
        driver.get(url)
        time.sleep(5)  # Wait for the JavaScript content to load (adjust the waiting time as needed)
        content = driver.page_source
        return content
    except Exception as e:
        print("Error: " + str(e))
        return None
    finally:
        driver.quit()


# Function that handles classification of sentences using OpenAI and scraping_by_url of news websites
def select_column_and_classify():
    # Research contexts for sentences
    try:
        context_choice = gui.ynbox("Context Research", "Do you want to research the context for this news?")
        process_existing_file = gui.ynbox("Context Research", "Do you want process an existing file?")

        if context_choice:
            file_path = gui.fileopenbox("Select the CSV file containing news for context research", filetypes=["*.csv"])
            df = pd.read_csv(file_path)
            column_names = df.columns.tolist()
            if not process_existing_file:
                df["link"] = ""  # Create a new column named "link"
                df["contextualized_sentence"] = ""  # Create a new column named "contextualized sentence"


            if file_path:
                sentence_column = gui.buttonbox("Column Selection", "Select the column for target sentence in the CSV:",
                                                choices=column_names)
                if not sentence_column:
                    raise ValueError("Invalid context selected selection")

                counter = 0  # Counter variable to track the number of rows processed
                row_index_input = gui.enterbox("Enter the row index to classify", "Row Index Input", 1)
                if row_index_input is None or not row_index_input.isdigit() or int(row_index_input) >= len(df):
                    row_index = 1  # Set a default starting index
                else:
                    row_index = int(row_index_input)

                print("loaded file as df: ", df)

                for row_index, row in itertools.islice(df.iterrows(), row_index, None):
                    # If role is not empty or N/A or has the same sentence as "contextualized_sentence", means context is added, then skip
                    # if process_existing_file and row["link"] != "N/A" and not pd.isnull(row["link"]) and row[sentence_column] != row["contextualized_sentence"]:
                    #     continue
                    target_sentence = row[sentence_column]
                    ticker, remaining_sentence, link = split_sentence(target_sentence)

                    if link:
                        print("Financial statement:", remaining_sentence, "Link:", link)
                        url, contextualized_sentence = scraping_by_url(link, remaining_sentence)
                        if url == 'N/A':
                            url, contextualized_sentence = scrape_google(remaining_sentence)
                    else:
                        print("Financial statement:", remaining_sentence)
                        url, contextualized_sentence = scrape_google(remaining_sentence)

                    df.at[row_index, "link"] = url
                    df.at[row_index, "contextualized_sentence"] = contextualized_sentence

                    counter += 1

                    # Save the DataFrame to a CSV file every 10 rows
                    if counter % 10 == 0:
                        output_file_path = os.path.splitext(file_path)[0] + "_scraped.csv"
                        df.to_csv(output_file_path, index=False)
                        print("Processed rows:", counter)
                        print("DataFrame saved to:", output_file_path)

                # Save the final DataFrame to a CSV file
                output_file_path = os.path.splitext(file_path)[0] + "_scraped.csv"
                df.to_csv(output_file_path, index=False)
                gui.msgbox("scraping_by_url Complete")
    except Exception as e:
        gui.exceptionbox(str(e))
        print("Error occurred at row index:", row_index)
        output_file_path = os.path.splitext(file_path)[0] + "_scraped.csv"
        df.to_csv(output_file_path, index=False)

def process_row(row_index, row, sentence_column):
    # Process each row here

    target_sentence = row[sentence_column]
    ticker, remaining_sentence, link = split_sentence(target_sentence)

    if link:
        print("Financial statement:", remaining_sentence, "Link:", link)
    else:
        print("Financial statement:", remaining_sentence)

    # Try all
    url, contextualized_sentence = scrape_google(remaining_sentence)
    if url == "N/A":
        url, contextualized_sentence = scrape_reuters(remaining_sentence)
    df.at[row_index, "link"] = url
    df.at[row_index, "contextualized_sentence"] = contextualized_sentence

    return row_index, row


if __name__ == '__main__':
    select_column_and_classify()