Sigrid De los Santos
Add matplotlib to requirements
56bc4cf
import os
import sys
import tempfile
import time
import itertools
import streamlit as st
import pandas as pd
from threading import Thread
from io import StringIO
# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline
st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
st.title("🧠 AI-Powered Investing News Analyzer")
# === API Key Input ===
st.subheader("πŸ” API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# === Topic Input ===
st.subheader("πŸ“ˆ Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
topics_data.append({"topic": topic, "timespan_days": days})
submitted = st.form_submit_button("Run Analysis")
# === Submission logic ===
if submitted:
if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
st.warning("Please fill in all fields.")
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["TAVILY_API_KEY"] = tavily_api_key
df = pd.DataFrame(topics_data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
# === UI Elements ===
spinner_box = st.empty() # For rotating messages
log_box = st.empty() # For logs
logs = []
rotating = True
def log(msg):
logs.append(msg)
log_box.code("\n".join(logs))
# === Rotating UI Messages ===
def rotating_messages():
messages = itertools.cycle([
"πŸ” Searching financial news...",
"🧠 Running language models...",
"πŸ“Š Analyzing investor sentiment...",
"πŸ“ Summarizing key takeaways...",
"πŸ’Ή Building markdown reports..."
])
while rotating:
spinner_box.markdown(f"⏳ {next(messages)}")
time.sleep(1.5)
rotator_thread = Thread(target=rotating_messages)
rotator_thread.start()
try:
# Check API Keys
import openai
openai.OpenAI(api_key=openai_api_key).models.list()
log("βœ… OpenAI API key is valid.")
import requests
tavily_test = requests.post(
"https://api.tavily.com/search",
headers={"Authorization": f"Bearer {tavily_api_key}"},
json={"query": "test", "days": 1, "max_results": 1}
)
if tavily_test.status_code == 200:
log("βœ… Tavily API key is valid.")
else:
raise ValueError(f"Tavily error: {tavily_test.status_code} - {tavily_test.text}")
# Run the full pipeline
log("πŸš€ Running analysis pipeline...")
output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
rotating = False
rotator_thread.join()
spinner_box.success("βœ… Analysis complete!")
if output_path and isinstance(output_path, list):
for path in output_path:
if os.path.exists(path):
with open(path, 'r', encoding='utf-8') as file:
html_content = file.read()
filename = os.path.basename(path)
st.download_button(
label=f"πŸ“₯ Download {filename}",
data=html_content,
file_name=filename,
mime="text/html"
)
st.components.v1.html(html_content, height=600, scrolling=True)
else:
st.error("❌ No reports were generated.")
except Exception as e:
rotating = False
rotator_thread.join()
spinner_box.error("❌ Failed.")
log_box.error(f"❌ Error: {e}")
##################################################################################################
##################################################################################################
# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd
# from io import StringIO
# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
# st.title("🧠 AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("πŸ” API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("πŸ“ˆ Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": days})
# submitted = st.form_submit_button("Run Analysis")
# # === Submission logic ===
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# progress_box = st.empty()
# def show_progress(msg):
# progress_box.markdown(f"⏳ {msg}")
# try:
# output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=show_progress)
# progress_box.success("βœ… Analysis complete!")
# if output_path and isinstance(output_path, list):
# for path in output_path:
# if os.path.exists(path):
# with open(path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# filename = os.path.basename(path)
# st.download_button(
# label=f"πŸ“₯ Download {filename}",
# data=html_content,
# file_name=filename,
# mime="text/html"
# )
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("❌ No reports were generated.")
# except Exception as e:
# progress_box.error(f"❌ Error: {e}")