Spaces:
Running
Running
File size: 7,800 Bytes
56bc4cf 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 7a4bde2 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 56bc4cf 7a4bde2 56bc4cf 8e384aa 56bc4cf 7a4bde2 56bc4cf 3e4bf85 8e384aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
import sys
import tempfile
import time
import itertools
import streamlit as st
import pandas as pd
from threading import Thread
from io import StringIO
# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline
st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
st.title("π§ AI-Powered Investing News Analyzer")
# === API Key Input ===
st.subheader("π API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# === Topic Input ===
st.subheader("π Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
topics_data.append({"topic": topic, "timespan_days": days})
submitted = st.form_submit_button("Run Analysis")
# === Submission logic ===
if submitted:
if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
st.warning("Please fill in all fields.")
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["TAVILY_API_KEY"] = tavily_api_key
df = pd.DataFrame(topics_data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
# === UI Elements ===
spinner_box = st.empty() # For rotating messages
log_box = st.empty() # For logs
logs = []
rotating = True
def log(msg):
logs.append(msg)
log_box.code("\n".join(logs))
# === Rotating UI Messages ===
def rotating_messages():
messages = itertools.cycle([
"π Searching financial news...",
"π§ Running language models...",
"π Analyzing investor sentiment...",
"π Summarizing key takeaways...",
"πΉ Building markdown reports..."
])
while rotating:
spinner_box.markdown(f"β³ {next(messages)}")
time.sleep(1.5)
rotator_thread = Thread(target=rotating_messages)
rotator_thread.start()
try:
# Check API Keys
import openai
openai.OpenAI(api_key=openai_api_key).models.list()
log("β
OpenAI API key is valid.")
import requests
tavily_test = requests.post(
"https://api.tavily.com/search",
headers={"Authorization": f"Bearer {tavily_api_key}"},
json={"query": "test", "days": 1, "max_results": 1}
)
if tavily_test.status_code == 200:
log("β
Tavily API key is valid.")
else:
raise ValueError(f"Tavily error: {tavily_test.status_code} - {tavily_test.text}")
# Run the full pipeline
log("π Running analysis pipeline...")
output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
rotating = False
rotator_thread.join()
spinner_box.success("β
Analysis complete!")
if output_path and isinstance(output_path, list):
for path in output_path:
if os.path.exists(path):
with open(path, 'r', encoding='utf-8') as file:
html_content = file.read()
filename = os.path.basename(path)
st.download_button(
label=f"π₯ Download {filename}",
data=html_content,
file_name=filename,
mime="text/html"
)
st.components.v1.html(html_content, height=600, scrolling=True)
else:
st.error("β No reports were generated.")
except Exception as e:
rotating = False
rotator_thread.join()
spinner_box.error("β Failed.")
log_box.error(f"β Error: {e}")
##################################################################################################
##################################################################################################
# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd
# from io import StringIO
# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
# st.title("π§ AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("π API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("π Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": days})
# submitted = st.form_submit_button("Run Analysis")
# # === Submission logic ===
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# progress_box = st.empty()
# def show_progress(msg):
# progress_box.markdown(f"β³ {msg}")
# try:
# output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=show_progress)
# progress_box.success("β
Analysis complete!")
# if output_path and isinstance(output_path, list):
# for path in output_path:
# if os.path.exists(path):
# with open(path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# filename = os.path.basename(path)
# st.download_button(
# label=f"π₯ Download {filename}",
# data=html_content,
# file_name=filename,
# mime="text/html"
# )
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("β No reports were generated.")
# except Exception as e:
# progress_box.error(f"β Error: {e}")
|