File size: 7,800 Bytes
56bc4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342fd5f
 
 
 
 
3e4bf85
342fd5f
 
 
 
 
3e4bf85
 
342fd5f
 
 
 
 
 
 
3e4bf85
342fd5f
 
 
3e4bf85
7a4bde2
342fd5f
 
 
 
 
3e4bf85
 
342fd5f
3e4bf85
342fd5f
3e4bf85
342fd5f
 
 
 
 
 
 
 
 
 
 
 
56bc4cf
7a4bde2
56bc4cf
 
8e384aa
56bc4cf
 
 
7a4bde2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56bc4cf
3e4bf85
8e384aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import sys
import tempfile
import time
import itertools
import streamlit as st
import pandas as pd
from threading import Thread
from io import StringIO

# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline

st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
st.title("🧠 AI-Powered Investing News Analyzer")

# === API Key Input ===
st.subheader("πŸ” API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()

# === Topic Input ===
st.subheader("πŸ“ˆ Topics of Interest")
topics_data = []

with st.form("topics_form"):
    topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)

    for i in range(topic_count):
        col1, col2 = st.columns(2)
        with col1:
            topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
        with col2:
            days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
        topics_data.append({"topic": topic, "timespan_days": days})

    submitted = st.form_submit_button("Run Analysis")

# === Submission logic ===
if submitted:
    if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
        st.warning("Please fill in all fields.")
    else:
        os.environ["OPENAI_API_KEY"] = openai_api_key
        os.environ["TAVILY_API_KEY"] = tavily_api_key

        df = pd.DataFrame(topics_data)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
            df.to_csv(tmp_csv.name, index=False)
            csv_path = tmp_csv.name

        # === UI Elements ===
        spinner_box = st.empty()   # For rotating messages
        log_box = st.empty()       # For logs
        logs = []
        rotating = True

        def log(msg):
            logs.append(msg)
            log_box.code("\n".join(logs))

        # === Rotating UI Messages ===
        def rotating_messages():
            messages = itertools.cycle([
                "πŸ” Searching financial news...",
                "🧠 Running language models...",
                "πŸ“Š Analyzing investor sentiment...",
                "πŸ“ Summarizing key takeaways...",
                "πŸ’Ή Building markdown reports..."
            ])
            while rotating:
                spinner_box.markdown(f"⏳ {next(messages)}")
                time.sleep(1.5)

        rotator_thread = Thread(target=rotating_messages)
        rotator_thread.start()

        try:
            # Check API Keys
            import openai
            openai.OpenAI(api_key=openai_api_key).models.list()
            log("βœ… OpenAI API key is valid.")

            import requests
            tavily_test = requests.post(
                "https://api.tavily.com/search",
                headers={"Authorization": f"Bearer {tavily_api_key}"},
                json={"query": "test", "days": 1, "max_results": 1}
            )
            if tavily_test.status_code == 200:
                log("βœ… Tavily API key is valid.")
            else:
                raise ValueError(f"Tavily error: {tavily_test.status_code} - {tavily_test.text}")

            # Run the full pipeline
            log("πŸš€ Running analysis pipeline...")
            output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=log)

            rotating = False
            rotator_thread.join()
            spinner_box.success("βœ… Analysis complete!")

            if output_path and isinstance(output_path, list):
                for path in output_path:
                    if os.path.exists(path):
                        with open(path, 'r', encoding='utf-8') as file:
                            html_content = file.read()
                            filename = os.path.basename(path)

                            st.download_button(
                                label=f"πŸ“₯ Download {filename}",
                                data=html_content,
                                file_name=filename,
                                mime="text/html"
                            )
                            st.components.v1.html(html_content, height=600, scrolling=True)
            else:
                st.error("❌ No reports were generated.")

        except Exception as e:
            rotating = False
            rotator_thread.join()
            spinner_box.error("❌ Failed.")
            log_box.error(f"❌ Error: {e}")


##################################################################################################
##################################################################################################
# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd
# from io import StringIO

# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline

# st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
# st.title("🧠 AI-Powered Investing News Analyzer")

# # === API Key Input ===
# st.subheader("πŸ” API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()

# # === Topic Input ===
# st.subheader("πŸ“ˆ Topics of Interest")
# topics_data = []

# with st.form("topics_form"):
#     topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)

#     for i in range(topic_count):
#         col1, col2 = st.columns(2)
#         with col1:
#             topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
#         with col2:
#             days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
#         topics_data.append({"topic": topic, "timespan_days": days})

#     submitted = st.form_submit_button("Run Analysis")

# # === Submission logic ===
# if submitted:
#     if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
#         st.warning("Please fill in all fields.")
#     else:
#         os.environ["OPENAI_API_KEY"] = openai_api_key
#         os.environ["TAVILY_API_KEY"] = tavily_api_key

#         df = pd.DataFrame(topics_data)
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
#             df.to_csv(tmp_csv.name, index=False)
#             csv_path = tmp_csv.name

#         progress_box = st.empty()

#         def show_progress(msg):
#             progress_box.markdown(f"⏳ {msg}")

#         try:
#             output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=show_progress)
#             progress_box.success("βœ… Analysis complete!")

#             if output_path and isinstance(output_path, list):
#                 for path in output_path:
#                     if os.path.exists(path):
#                         with open(path, 'r', encoding='utf-8') as file:
#                             html_content = file.read()
#                             filename = os.path.basename(path)

#                             st.download_button(
#                                 label=f"πŸ“₯ Download {filename}",
#                                 data=html_content,
#                                 file_name=filename,
#                                 mime="text/html"
#                             )
#                             st.components.v1.html(html_content, height=600, scrolling=True)
#             else:
#                 st.error("❌ No reports were generated.")
#         except Exception as e:
#             progress_box.error(f"❌ Error: {e}")