Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -45,8 +45,19 @@ faiss_index = None
|
|
45 |
bookmarks = []
|
46 |
fetch_cache = {}
|
47 |
|
48 |
-
#
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Define the categories
|
52 |
CATEGORIES = [
|
@@ -83,10 +94,34 @@ if not GROQ_API_KEY:
|
|
83 |
openai.api_key = GROQ_API_KEY
|
84 |
openai.api_base = "https://api.groq.com/openai/v1"
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def extract_main_content(soup):
|
91 |
"""
|
92 |
Extract the main content from a webpage while filtering out boilerplate content.
|
@@ -155,186 +190,14 @@ def get_page_metadata(soup):
|
|
155 |
metadata['title'] = og_title.get('content', '').strip()
|
156 |
|
157 |
return metadata
|
158 |
-
def generate_summary_and_assign_category(bookmark):
|
159 |
-
"""
|
160 |
-
Generate a concise summary and assign a category using a single LLM call.
|
161 |
-
"""
|
162 |
-
logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}")
|
163 |
-
|
164 |
-
max_retries = 3
|
165 |
-
retry_count = 0
|
166 |
-
base_wait = 5 # Increased base wait time to 5 seconds
|
167 |
-
|
168 |
-
while retry_count < max_retries:
|
169 |
-
try:
|
170 |
-
# Rate Limiting Logic - Modified
|
171 |
-
with api_lock:
|
172 |
-
global last_api_call_time
|
173 |
-
current_time = time.time()
|
174 |
-
elapsed = current_time - last_api_call_time
|
175 |
-
if elapsed < base_wait:
|
176 |
-
sleep_duration = base_wait - elapsed
|
177 |
-
logger.info(f"Rate limiting: Waiting for {sleep_duration:.2f} seconds...")
|
178 |
-
time.sleep(sleep_duration)
|
179 |
-
last_api_call_time = time.time()
|
180 |
-
|
181 |
-
html_content = bookmark.get('html_content', '')
|
182 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
183 |
-
metadata = get_page_metadata(soup)
|
184 |
-
main_content = extract_main_content(soup)
|
185 |
-
|
186 |
-
# Prepare content for the prompt
|
187 |
-
content_parts = []
|
188 |
-
if metadata['title']:
|
189 |
-
content_parts.append(f"Title: {metadata['title']}")
|
190 |
-
if metadata['description']:
|
191 |
-
content_parts.append(f"Description: {metadata['description']}")
|
192 |
-
if metadata['keywords']:
|
193 |
-
content_parts.append(f"Keywords: {metadata['keywords']}")
|
194 |
-
if main_content:
|
195 |
-
content_parts.append(f"Main Content: {main_content}")
|
196 |
-
|
197 |
-
content_text = '\n'.join(content_parts)
|
198 |
-
|
199 |
-
# Detect insufficient or erroneous content
|
200 |
-
error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
|
201 |
-
if not content_text or len(content_text.split()) < 50:
|
202 |
-
use_prior_knowledge = True
|
203 |
-
logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.")
|
204 |
-
elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
|
205 |
-
use_prior_knowledge = True
|
206 |
-
logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.")
|
207 |
-
else:
|
208 |
-
use_prior_knowledge = False
|
209 |
-
|
210 |
-
if use_prior_knowledge:
|
211 |
-
prompt = f"""
|
212 |
-
You are a knowledgeable assistant with up-to-date information as of 2023.
|
213 |
-
URL: {bookmark.get('url')}
|
214 |
-
Provide:
|
215 |
-
1. A concise summary (max two sentences) about this website.
|
216 |
-
2. Assign the most appropriate category from the list below.
|
217 |
-
Categories:
|
218 |
-
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
|
219 |
-
Format:
|
220 |
-
Summary: [Your summary]
|
221 |
-
Category: [One category]
|
222 |
-
"""
|
223 |
-
else:
|
224 |
-
prompt = f"""
|
225 |
-
You are an assistant that creates concise webpage summaries and assigns categories.
|
226 |
-
Content:
|
227 |
-
{content_text}
|
228 |
-
Provide:
|
229 |
-
1. A concise summary (max two sentences) focusing on the main topic.
|
230 |
-
2. Assign the most appropriate category from the list below.
|
231 |
-
Categories:
|
232 |
-
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
|
233 |
-
Format:
|
234 |
-
Summary: [Your summary]
|
235 |
-
Category: [One category]
|
236 |
-
"""
|
237 |
-
|
238 |
-
def estimate_tokens(text):
|
239 |
-
return len(text) / 4
|
240 |
-
|
241 |
-
prompt_tokens = estimate_tokens(prompt)
|
242 |
-
max_tokens = 150
|
243 |
-
total_tokens = prompt_tokens + max_tokens
|
244 |
-
|
245 |
-
tokens_per_minute = 40000
|
246 |
-
tokens_per_second = tokens_per_minute / 60
|
247 |
-
required_delay = total_tokens / tokens_per_second
|
248 |
-
sleep_time = max(required_delay, base_wait) # Use at least base_wait seconds
|
249 |
-
|
250 |
-
response = openai.ChatCompletion.create(
|
251 |
-
model='llama-3.1-70b-versatile',
|
252 |
-
messages=[
|
253 |
-
{"role": "user", "content": prompt}
|
254 |
-
],
|
255 |
-
max_tokens=int(max_tokens),
|
256 |
-
temperature=0.5,
|
257 |
-
)
|
258 |
-
|
259 |
-
content = response['choices'][0]['message']['content'].strip()
|
260 |
-
if not content:
|
261 |
-
raise ValueError("Empty response received from the model.")
|
262 |
-
|
263 |
-
summary_match = re.search(r"Summary:\s*(.*)", content)
|
264 |
-
category_match = re.search(r"Category:\s*(.*)", content)
|
265 |
-
|
266 |
-
if summary_match:
|
267 |
-
bookmark['summary'] = summary_match.group(1).strip()
|
268 |
-
else:
|
269 |
-
bookmark['summary'] = 'No summary available.'
|
270 |
-
|
271 |
-
if category_match:
|
272 |
-
category = category_match.group(1).strip().strip('"')
|
273 |
-
if category in CATEGORIES:
|
274 |
-
bookmark['category'] = category
|
275 |
-
else:
|
276 |
-
bookmark['category'] = 'Uncategorized'
|
277 |
-
else:
|
278 |
-
bookmark['category'] = 'Uncategorized'
|
279 |
-
|
280 |
-
# Simple keyword-based validation
|
281 |
-
summary_lower = bookmark['summary'].lower()
|
282 |
-
url_lower = bookmark['url'].lower()
|
283 |
-
if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
|
284 |
-
bookmark['category'] = 'Social Media'
|
285 |
-
elif 'wikipedia' in url_lower:
|
286 |
-
bookmark['category'] = 'Reference and Knowledge Bases'
|
287 |
-
|
288 |
-
logger.info("Successfully generated summary and assigned category")
|
289 |
-
|
290 |
-
# Add consistent delay after successful processing
|
291 |
-
time.sleep(sleep_time)
|
292 |
-
break
|
293 |
-
|
294 |
-
except openai.error.RateLimitError as e:
|
295 |
-
retry_count += 1
|
296 |
-
# Use exponential backoff with a maximum wait time
|
297 |
-
wait_time = min(base_wait * (2 ** retry_count), 30) # Cap at 30 seconds
|
298 |
-
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying... (Attempt {retry_count}/{max_retries})")
|
299 |
-
time.sleep(wait_time)
|
300 |
-
if retry_count == max_retries:
|
301 |
-
bookmark['summary'] = 'Summary generation failed due to rate limits.'
|
302 |
-
bookmark['category'] = 'Uncategorized'
|
303 |
-
break
|
304 |
-
except Exception as e:
|
305 |
-
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
306 |
-
bookmark['summary'] = 'No summary available.'
|
307 |
-
bookmark['category'] = 'Uncategorized'
|
308 |
-
break
|
309 |
|
310 |
-
def parse_bookmarks(file_content):
|
311 |
-
"""
|
312 |
-
Parse bookmarks from HTML file.
|
313 |
-
"""
|
314 |
-
logger.info("Parsing bookmarks")
|
315 |
-
try:
|
316 |
-
soup = BeautifulSoup(file_content, 'html.parser')
|
317 |
-
extracted_bookmarks = []
|
318 |
-
for link in soup.find_all('a'):
|
319 |
-
url = link.get('href')
|
320 |
-
title = link.text.strip()
|
321 |
-
if url and title:
|
322 |
-
if url.startswith('http://') or url.startswith('https://'):
|
323 |
-
extracted_bookmarks.append({'url': url, 'title': title})
|
324 |
-
else:
|
325 |
-
logger.info(f"Skipping non-http/https URL: {url}")
|
326 |
-
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
|
327 |
-
return extracted_bookmarks
|
328 |
-
except Exception as e:
|
329 |
-
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
|
330 |
-
raise
|
331 |
def fetch_url_info(bookmark):
|
332 |
"""
|
333 |
Fetch information about a URL.
|
334 |
"""
|
335 |
url = bookmark['url']
|
336 |
if url in fetch_cache:
|
337 |
-
with
|
338 |
bookmark.update(fetch_cache[url])
|
339 |
return
|
340 |
|
@@ -378,7 +241,7 @@ def fetch_url_info(bookmark):
|
|
378 |
bookmark['html_content'] = ''
|
379 |
logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
|
380 |
finally:
|
381 |
-
with
|
382 |
fetch_cache[url] = {
|
383 |
'etag': bookmark.get('etag'),
|
384 |
'status_code': bookmark.get('status_code'),
|
@@ -388,6 +251,87 @@ def fetch_url_info(bookmark):
|
|
388 |
'slow_link': bookmark.get('slow_link', False),
|
389 |
}
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
def vectorize_and_index(bookmarks_list):
|
392 |
"""
|
393 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
@@ -459,7 +403,7 @@ def display_bookmarks():
|
|
459 |
|
460 |
def process_uploaded_file(file, state_bookmarks):
|
461 |
"""
|
462 |
-
Process
|
463 |
"""
|
464 |
global bookmarks, faiss_index
|
465 |
logger.info("Processing uploaded file")
|
@@ -470,52 +414,63 @@ def process_uploaded_file(file, state_bookmarks):
|
|
470 |
|
471 |
try:
|
472 |
file_content = file.decode('utf-8')
|
473 |
-
except UnicodeDecodeError as e:
|
474 |
-
logger.error(f"Error decoding the file: {e}", exc_info=True)
|
475 |
-
return "Error decoding the file. Please ensure it's a valid HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
476 |
-
|
477 |
-
try:
|
478 |
bookmarks = parse_bookmarks(file_content)
|
479 |
-
except Exception as e:
|
480 |
-
logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
|
481 |
-
return "Error parsing the bookmarks HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
482 |
|
483 |
-
|
484 |
-
|
485 |
-
return "No bookmarks found in the uploaded file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
executor.map(fetch_url_info, bookmarks)
|
495 |
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
|
500 |
|
501 |
-
|
502 |
faiss_index = vectorize_and_index(bookmarks)
|
503 |
-
except Exception as e:
|
504 |
-
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
505 |
-
return "Error building search index.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
506 |
|
507 |
-
|
508 |
-
|
|
|
|
|
|
|
509 |
|
510 |
-
|
511 |
-
bookmark_html = display_bookmarks()
|
512 |
-
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
513 |
-
for i, bookmark in enumerate(bookmarks)]
|
514 |
|
515 |
-
|
516 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
|
518 |
-
return message, bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
|
519 |
def delete_selected_bookmarks(selected_indices, state_bookmarks):
|
520 |
"""
|
521 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
@@ -578,7 +533,6 @@ def edit_selected_bookmarks_category(selected_indices, new_category, state_bookm
|
|
578 |
state_bookmarks = bookmarks.copy()
|
579 |
|
580 |
return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
|
581 |
-
|
582 |
def export_bookmarks():
|
583 |
"""
|
584 |
Export bookmarks to an HTML file.
|
@@ -622,81 +576,82 @@ def chatbot_response(user_query, chat_history):
|
|
622 |
try:
|
623 |
chat_history.append({"role": "user", "content": user_query})
|
624 |
|
625 |
-
|
626 |
-
|
627 |
-
base_wait = 5 # Increased base wait time to 5 seconds
|
628 |
-
for attempt in range(max_retries):
|
629 |
-
try:
|
630 |
with api_lock:
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
chat_history.append({"role": "assistant", "content": answer})
|
652 |
return chat_history
|
653 |
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
Bookmarks:
|
663 |
-
{bookmarks_info}
|
664 |
-
Provide a concise and helpful response.
|
665 |
-
"""
|
666 |
-
|
667 |
-
response = openai.ChatCompletion.create(
|
668 |
-
model='llama-3.1-70b-versatile',
|
669 |
-
messages=[
|
670 |
-
{"role": "user", "content": prompt}
|
671 |
-
],
|
672 |
-
max_tokens=300,
|
673 |
-
temperature=0.7,
|
674 |
-
)
|
675 |
-
|
676 |
-
answer = response['choices'][0]['message']['content'].strip()
|
677 |
-
logger.info("Chatbot response generated")
|
678 |
-
|
679 |
-
# Add a small delay between successful requests
|
680 |
-
time.sleep(base_wait)
|
681 |
-
|
682 |
-
chat_history.append({"role": "assistant", "content": answer})
|
683 |
-
return chat_history
|
684 |
-
|
685 |
-
except openai.error.RateLimitError as e:
|
686 |
-
wait_time = min(base_wait * (2 ** attempt), 30) # Cap maximum wait time at 30 seconds
|
687 |
-
logger.warning(f"Rate limit reached. Attempt {attempt + 1}/{max_retries}. Waiting for {wait_time} seconds...")
|
688 |
-
time.sleep(wait_time)
|
689 |
-
if attempt == max_retries - 1:
|
690 |
-
error_message = "⚠️ The service is currently experiencing high demand. Please try again in a few moments."
|
691 |
chat_history.append({"role": "assistant", "content": error_message})
|
692 |
return chat_history
|
693 |
-
continue
|
694 |
|
695 |
except Exception as e:
|
696 |
error_message = f"⚠️ Error processing your query: {str(e)}"
|
697 |
logger.error(error_message, exc_info=True)
|
698 |
chat_history.append({"role": "assistant", "content": error_message})
|
699 |
return chat_history
|
|
|
700 |
def build_app():
|
701 |
"""
|
702 |
Build and launch the Gradio app.
|
|
|
45 |
bookmarks = []
|
46 |
fetch_cache = {}
|
47 |
|
48 |
+
# Groq API Rate Limits
|
49 |
+
GROQ_RPM = 30 # requests per minute
|
50 |
+
GROQ_TPM = 40000 # tokens per minute
|
51 |
+
SECONDS_PER_MINUTE = 60
|
52 |
+
MIN_TIME_BETWEEN_CALLS = SECONDS_PER_MINUTE / GROQ_RPM # 2 seconds between calls
|
53 |
+
MAX_CONCURRENT_CALLS = 3 # Keep concurrent calls limited to prevent rate limits
|
54 |
+
TOKEN_BUFFER = 0.9 # Use 90% of token limit to be safe
|
55 |
+
|
56 |
+
# Rate limiting tools
|
57 |
+
api_lock = threading.Lock()
|
58 |
+
request_times = [] # Track request timestamps
|
59 |
+
token_usage = [] # Track token usage
|
60 |
+
LLM_SEMAPHORE = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
61 |
|
62 |
# Define the categories
|
63 |
CATEGORIES = [
|
|
|
94 |
openai.api_key = GROQ_API_KEY
|
95 |
openai.api_base = "https://api.groq.com/openai/v1"
|
96 |
|
97 |
+
def manage_rate_limits():
|
98 |
+
"""
|
99 |
+
Manage both request and token rate limits.
|
100 |
+
Returns the time to wait (if any) before making next request.
|
101 |
+
"""
|
102 |
+
current_time = time.time()
|
103 |
+
minute_ago = current_time - SECONDS_PER_MINUTE
|
104 |
+
|
105 |
+
# Clean up old entries
|
106 |
+
global request_times, token_usage
|
107 |
+
request_times = [t for t in request_times if t > minute_ago]
|
108 |
+
token_usage = [t for t, _ in token_usage if t > minute_ago]
|
109 |
|
110 |
+
# Check request rate
|
111 |
+
if len(request_times) >= GROQ_RPM:
|
112 |
+
oldest_request = request_times[0]
|
113 |
+
return max(0, SECONDS_PER_MINUTE - (current_time - oldest_request))
|
114 |
+
|
115 |
+
# Check token rate
|
116 |
+
total_tokens = sum(tokens for _, tokens in token_usage)
|
117 |
+
if total_tokens >= GROQ_TPM * TOKEN_BUFFER:
|
118 |
+
return 1.0 # Wait a second if near token limit
|
119 |
+
|
120 |
+
return 0
|
121 |
+
|
122 |
+
def estimate_tokens(text):
|
123 |
+
"""Estimate tokens in text using GPT-3 tokenizer approximation"""
|
124 |
+
return len(text.split()) * 1.3 # Rough estimate: 1.3 tokens per word
|
125 |
def extract_main_content(soup):
|
126 |
"""
|
127 |
Extract the main content from a webpage while filtering out boilerplate content.
|
|
|
190 |
metadata['title'] = og_title.get('content', '').strip()
|
191 |
|
192 |
return metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
def fetch_url_info(bookmark):
|
195 |
"""
|
196 |
Fetch information about a URL.
|
197 |
"""
|
198 |
url = bookmark['url']
|
199 |
if url in fetch_cache:
|
200 |
+
with api_lock:
|
201 |
bookmark.update(fetch_cache[url])
|
202 |
return
|
203 |
|
|
|
241 |
bookmark['html_content'] = ''
|
242 |
logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
|
243 |
finally:
|
244 |
+
with api_lock:
|
245 |
fetch_cache[url] = {
|
246 |
'etag': bookmark.get('etag'),
|
247 |
'status_code': bookmark.get('status_code'),
|
|
|
251 |
'slow_link': bookmark.get('slow_link', False),
|
252 |
}
|
253 |
|
254 |
+
def process_bookmarks_batch(bookmarks_batch):
|
255 |
+
"""Process a batch of bookmarks with controlled rate limiting"""
|
256 |
+
for bookmark in bookmarks_batch:
|
257 |
+
with LLM_SEMAPHORE:
|
258 |
+
while True:
|
259 |
+
with api_lock:
|
260 |
+
wait_time = manage_rate_limits()
|
261 |
+
if wait_time <= 0:
|
262 |
+
break
|
263 |
+
logger.info(f"Rate limiting: Waiting for {wait_time:.2f} seconds...")
|
264 |
+
time.sleep(wait_time)
|
265 |
+
|
266 |
+
try:
|
267 |
+
html_content = bookmark.get('html_content', '')
|
268 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
269 |
+
metadata = get_page_metadata(soup)
|
270 |
+
main_content = extract_main_content(soup)
|
271 |
+
|
272 |
+
# Prepare shortened prompt to reduce tokens
|
273 |
+
content = f"Title: {metadata['title']}\nURL: {bookmark['url']}"
|
274 |
+
if len(main_content) > 1000: # Limit content length
|
275 |
+
main_content = main_content[:1000] + "..."
|
276 |
+
|
277 |
+
prompt = f"""Analyze this webpage:
|
278 |
+
{content}
|
279 |
+
Content: {main_content}
|
280 |
+
Provide in format:
|
281 |
+
Summary: [2 sentences max]
|
282 |
+
Category: [{', '.join(CATEGORIES)}]"""
|
283 |
+
|
284 |
+
# Estimate tokens
|
285 |
+
input_tokens = estimate_tokens(prompt)
|
286 |
+
max_tokens = 150
|
287 |
+
total_tokens = input_tokens + max_tokens
|
288 |
+
|
289 |
+
# Make API call
|
290 |
+
response = openai.ChatCompletion.create(
|
291 |
+
model='llama-3.1-70b-versatile',
|
292 |
+
messages=[{"role": "user", "content": prompt}],
|
293 |
+
max_tokens=max_tokens,
|
294 |
+
temperature=0.5,
|
295 |
+
)
|
296 |
+
|
297 |
+
# Track rate limits
|
298 |
+
with api_lock:
|
299 |
+
current_time = time.time()
|
300 |
+
request_times.append(current_time)
|
301 |
+
token_usage.append((current_time, total_tokens))
|
302 |
+
|
303 |
+
content = response['choices'][0]['message']['content'].strip()
|
304 |
+
|
305 |
+
# Process response
|
306 |
+
summary_match = re.search(r"Summary:\s*(.*?)(?:\n|$)", content)
|
307 |
+
category_match = re.search(r"Category:\s*(.*?)(?:\n|$)", content)
|
308 |
+
|
309 |
+
bookmark['summary'] = summary_match.group(1).strip() if summary_match else 'No summary available.'
|
310 |
+
|
311 |
+
if category_match:
|
312 |
+
category = category_match.group(1).strip().strip('"')
|
313 |
+
bookmark['category'] = category if category in CATEGORIES else 'Uncategorized'
|
314 |
+
else:
|
315 |
+
bookmark['category'] = 'Uncategorized'
|
316 |
+
|
317 |
+
# Quick category validation
|
318 |
+
if 'social media' in bookmark['url'].lower() or 'twitter' in bookmark['url'].lower() or 'x.com' in bookmark['url'].lower():
|
319 |
+
bookmark['category'] = 'Social Media'
|
320 |
+
elif 'wikipedia' in bookmark['url'].lower():
|
321 |
+
bookmark['category'] = 'Reference and Knowledge Bases'
|
322 |
+
|
323 |
+
logger.info(f"Successfully processed bookmark: {bookmark['url']}")
|
324 |
+
break
|
325 |
+
|
326 |
+
except openai.error.RateLimitError as e:
|
327 |
+
wait_time = int(e.headers.get('Retry-After', 5))
|
328 |
+
logger.warning(f"Rate limit hit, waiting {wait_time} seconds...")
|
329 |
+
time.sleep(wait_time)
|
330 |
+
except Exception as e:
|
331 |
+
logger.error(f"Error processing bookmark: {e}")
|
332 |
+
bookmark['summary'] = 'Processing failed.'
|
333 |
+
bookmark['category'] = 'Uncategorized'
|
334 |
+
break
|
335 |
def vectorize_and_index(bookmarks_list):
|
336 |
"""
|
337 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
|
|
403 |
|
404 |
def process_uploaded_file(file, state_bookmarks):
|
405 |
"""
|
406 |
+
Process uploaded file with optimized batch processing
|
407 |
"""
|
408 |
global bookmarks, faiss_index
|
409 |
logger.info("Processing uploaded file")
|
|
|
414 |
|
415 |
try:
|
416 |
file_content = file.decode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
417 |
bookmarks = parse_bookmarks(file_content)
|
|
|
|
|
|
|
418 |
|
419 |
+
if not bookmarks:
|
420 |
+
return "No bookmarks found in the file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
|
|
421 |
|
422 |
+
# Assign IDs
|
423 |
+
for idx, bookmark in enumerate(bookmarks):
|
424 |
+
bookmark['id'] = idx
|
425 |
|
426 |
+
# First fetch all URLs concurrently
|
427 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
428 |
+
executor.map(fetch_url_info, bookmarks)
|
|
|
429 |
|
430 |
+
# Process bookmarks in parallel with controlled concurrency
|
431 |
+
batch_size = min(MAX_CONCURRENT_CALLS, len(bookmarks))
|
432 |
+
batches = [bookmarks[i:i + batch_size] for i in range(0, len(bookmarks), batch_size)]
|
433 |
+
|
434 |
+
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT_CALLS) as executor:
|
435 |
+
executor.map(process_bookmarks_batch, batches)
|
436 |
|
437 |
+
# Build FAISS index
|
438 |
faiss_index = vectorize_and_index(bookmarks)
|
|
|
|
|
|
|
439 |
|
440 |
+
# Update display and state
|
441 |
+
bookmark_html = display_bookmarks()
|
442 |
+
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
443 |
+
for i, bookmark in enumerate(bookmarks)]
|
444 |
+
state_bookmarks = bookmarks.copy()
|
445 |
|
446 |
+
return "✅ Processing complete!", bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
|
|
|
|
|
|
|
447 |
|
448 |
+
except Exception as e:
|
449 |
+
logger.error(f"Error processing file: {e}")
|
450 |
+
return f"Error processing file: {str(e)}", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
451 |
+
|
452 |
+
def parse_bookmarks(file_content):
|
453 |
+
"""
|
454 |
+
Parse bookmarks from HTML file.
|
455 |
+
"""
|
456 |
+
logger.info("Parsing bookmarks")
|
457 |
+
try:
|
458 |
+
soup = BeautifulSoup(file_content, 'html.parser')
|
459 |
+
extracted_bookmarks = []
|
460 |
+
for link in soup.find_all('a'):
|
461 |
+
url = link.get('href')
|
462 |
+
title = link.text.strip()
|
463 |
+
if url and title:
|
464 |
+
if url.startswith('http://') or url.startswith('https://'):
|
465 |
+
extracted_bookmarks.append({'url': url, 'title': title})
|
466 |
+
else:
|
467 |
+
logger.info(f"Skipping non-http/https URL: {url}")
|
468 |
+
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
|
469 |
+
return extracted_bookmarks
|
470 |
+
except Exception as e:
|
471 |
+
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
|
472 |
+
raise
|
473 |
|
|
|
474 |
def delete_selected_bookmarks(selected_indices, state_bookmarks):
|
475 |
"""
|
476 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
|
|
533 |
state_bookmarks = bookmarks.copy()
|
534 |
|
535 |
return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
|
|
|
536 |
def export_bookmarks():
|
537 |
"""
|
538 |
Export bookmarks to an HTML file.
|
|
|
576 |
try:
|
577 |
chat_history.append({"role": "user", "content": user_query})
|
578 |
|
579 |
+
with LLM_SEMAPHORE:
|
580 |
+
while True:
|
|
|
|
|
|
|
581 |
with api_lock:
|
582 |
+
wait_time = manage_rate_limits()
|
583 |
+
if wait_time <= 0:
|
584 |
+
break
|
585 |
+
logger.info(f"Rate limiting: Waiting for {wait_time:.2f} seconds...")
|
586 |
+
time.sleep(wait_time)
|
587 |
+
|
588 |
+
try:
|
589 |
+
# Search for relevant bookmarks
|
590 |
+
query_vector = embedding_model.encode([user_query]).astype('float32')
|
591 |
+
k = 5
|
592 |
+
distances, ids = faiss_index.search(query_vector, k)
|
593 |
+
ids = ids.flatten()
|
594 |
+
|
595 |
+
id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
|
596 |
+
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
|
597 |
+
|
598 |
+
if not matching_bookmarks:
|
599 |
+
answer = "No relevant bookmarks found for your query."
|
600 |
+
chat_history.append({"role": "assistant", "content": answer})
|
601 |
+
return chat_history
|
602 |
+
|
603 |
+
# Prepare concise prompt
|
604 |
+
bookmarks_info = "\n".join([
|
605 |
+
f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
|
606 |
+
for bookmark in matching_bookmarks
|
607 |
+
])
|
608 |
+
|
609 |
+
prompt = f"""User Query: "{user_query}"
|
610 |
+
Found Bookmarks:
|
611 |
+
{bookmarks_info}
|
612 |
+
Provide a helpful, concise response."""
|
613 |
+
|
614 |
+
# Estimate tokens and make API call
|
615 |
+
input_tokens = estimate_tokens(prompt)
|
616 |
+
max_tokens = 300
|
617 |
+
total_tokens = input_tokens + max_tokens
|
618 |
+
|
619 |
+
response = openai.ChatCompletion.create(
|
620 |
+
model='llama-3.1-70b-versatile',
|
621 |
+
messages=[{"role": "user", "content": prompt}],
|
622 |
+
max_tokens=max_tokens,
|
623 |
+
temperature=0.7,
|
624 |
+
)
|
625 |
+
|
626 |
+
# Track rate limits
|
627 |
+
with api_lock:
|
628 |
+
current_time = time.time()
|
629 |
+
request_times.append(current_time)
|
630 |
+
token_usage.append((current_time, total_tokens))
|
631 |
+
|
632 |
+
answer = response['choices'][0]['message']['content'].strip()
|
633 |
+
logger.info("Chatbot response generated")
|
634 |
+
|
635 |
chat_history.append({"role": "assistant", "content": answer})
|
636 |
return chat_history
|
637 |
|
638 |
+
except openai.error.RateLimitError as e:
|
639 |
+
wait_time = int(e.headers.get('Retry-After', 5))
|
640 |
+
logger.warning(f"Rate limit hit, waiting {wait_time} seconds...")
|
641 |
+
time.sleep(wait_time)
|
642 |
+
continue
|
643 |
+
except Exception as e:
|
644 |
+
error_message = f"⚠️ Error processing your query: {str(e)}"
|
645 |
+
logger.error(error_message, exc_info=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
chat_history.append({"role": "assistant", "content": error_message})
|
647 |
return chat_history
|
|
|
648 |
|
649 |
except Exception as e:
|
650 |
error_message = f"⚠️ Error processing your query: {str(e)}"
|
651 |
logger.error(error_message, exc_info=True)
|
652 |
chat_history.append({"role": "assistant", "content": error_message})
|
653 |
return chat_history
|
654 |
+
|
655 |
def build_app():
|
656 |
"""
|
657 |
Build and launch the Gradio app.
|