siddhartharya commited on
Commit
dd78c27
·
verified ·
1 Parent(s): 5b290a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +234 -279
app.py CHANGED
@@ -45,8 +45,19 @@ faiss_index = None
45
  bookmarks = []
46
  fetch_cache = {}
47
 
48
- # Lock for thread-safe operations
49
- lock = threading.Lock()
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  # Define the categories
52
  CATEGORIES = [
@@ -83,10 +94,34 @@ if not GROQ_API_KEY:
83
  openai.api_key = GROQ_API_KEY
84
  openai.api_base = "https://api.groq.com/openai/v1"
85
 
86
- # Initialize global variables for rate limiting
87
- api_lock = threading.Lock()
88
- last_api_call_time = 0
 
 
 
 
 
 
 
 
 
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  def extract_main_content(soup):
91
  """
92
  Extract the main content from a webpage while filtering out boilerplate content.
@@ -155,186 +190,14 @@ def get_page_metadata(soup):
155
  metadata['title'] = og_title.get('content', '').strip()
156
 
157
  return metadata
158
- def generate_summary_and_assign_category(bookmark):
159
- """
160
- Generate a concise summary and assign a category using a single LLM call.
161
- """
162
- logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}")
163
-
164
- max_retries = 3
165
- retry_count = 0
166
- base_wait = 5 # Increased base wait time to 5 seconds
167
-
168
- while retry_count < max_retries:
169
- try:
170
- # Rate Limiting Logic - Modified
171
- with api_lock:
172
- global last_api_call_time
173
- current_time = time.time()
174
- elapsed = current_time - last_api_call_time
175
- if elapsed < base_wait:
176
- sleep_duration = base_wait - elapsed
177
- logger.info(f"Rate limiting: Waiting for {sleep_duration:.2f} seconds...")
178
- time.sleep(sleep_duration)
179
- last_api_call_time = time.time()
180
-
181
- html_content = bookmark.get('html_content', '')
182
- soup = BeautifulSoup(html_content, 'html.parser')
183
- metadata = get_page_metadata(soup)
184
- main_content = extract_main_content(soup)
185
-
186
- # Prepare content for the prompt
187
- content_parts = []
188
- if metadata['title']:
189
- content_parts.append(f"Title: {metadata['title']}")
190
- if metadata['description']:
191
- content_parts.append(f"Description: {metadata['description']}")
192
- if metadata['keywords']:
193
- content_parts.append(f"Keywords: {metadata['keywords']}")
194
- if main_content:
195
- content_parts.append(f"Main Content: {main_content}")
196
-
197
- content_text = '\n'.join(content_parts)
198
-
199
- # Detect insufficient or erroneous content
200
- error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
201
- if not content_text or len(content_text.split()) < 50:
202
- use_prior_knowledge = True
203
- logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.")
204
- elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
205
- use_prior_knowledge = True
206
- logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.")
207
- else:
208
- use_prior_knowledge = False
209
-
210
- if use_prior_knowledge:
211
- prompt = f"""
212
- You are a knowledgeable assistant with up-to-date information as of 2023.
213
- URL: {bookmark.get('url')}
214
- Provide:
215
- 1. A concise summary (max two sentences) about this website.
216
- 2. Assign the most appropriate category from the list below.
217
- Categories:
218
- {', '.join([f'"{cat}"' for cat in CATEGORIES])}
219
- Format:
220
- Summary: [Your summary]
221
- Category: [One category]
222
- """
223
- else:
224
- prompt = f"""
225
- You are an assistant that creates concise webpage summaries and assigns categories.
226
- Content:
227
- {content_text}
228
- Provide:
229
- 1. A concise summary (max two sentences) focusing on the main topic.
230
- 2. Assign the most appropriate category from the list below.
231
- Categories:
232
- {', '.join([f'"{cat}"' for cat in CATEGORIES])}
233
- Format:
234
- Summary: [Your summary]
235
- Category: [One category]
236
- """
237
-
238
- def estimate_tokens(text):
239
- return len(text) / 4
240
-
241
- prompt_tokens = estimate_tokens(prompt)
242
- max_tokens = 150
243
- total_tokens = prompt_tokens + max_tokens
244
-
245
- tokens_per_minute = 40000
246
- tokens_per_second = tokens_per_minute / 60
247
- required_delay = total_tokens / tokens_per_second
248
- sleep_time = max(required_delay, base_wait) # Use at least base_wait seconds
249
-
250
- response = openai.ChatCompletion.create(
251
- model='llama-3.1-70b-versatile',
252
- messages=[
253
- {"role": "user", "content": prompt}
254
- ],
255
- max_tokens=int(max_tokens),
256
- temperature=0.5,
257
- )
258
-
259
- content = response['choices'][0]['message']['content'].strip()
260
- if not content:
261
- raise ValueError("Empty response received from the model.")
262
-
263
- summary_match = re.search(r"Summary:\s*(.*)", content)
264
- category_match = re.search(r"Category:\s*(.*)", content)
265
-
266
- if summary_match:
267
- bookmark['summary'] = summary_match.group(1).strip()
268
- else:
269
- bookmark['summary'] = 'No summary available.'
270
-
271
- if category_match:
272
- category = category_match.group(1).strip().strip('"')
273
- if category in CATEGORIES:
274
- bookmark['category'] = category
275
- else:
276
- bookmark['category'] = 'Uncategorized'
277
- else:
278
- bookmark['category'] = 'Uncategorized'
279
-
280
- # Simple keyword-based validation
281
- summary_lower = bookmark['summary'].lower()
282
- url_lower = bookmark['url'].lower()
283
- if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
284
- bookmark['category'] = 'Social Media'
285
- elif 'wikipedia' in url_lower:
286
- bookmark['category'] = 'Reference and Knowledge Bases'
287
-
288
- logger.info("Successfully generated summary and assigned category")
289
-
290
- # Add consistent delay after successful processing
291
- time.sleep(sleep_time)
292
- break
293
-
294
- except openai.error.RateLimitError as e:
295
- retry_count += 1
296
- # Use exponential backoff with a maximum wait time
297
- wait_time = min(base_wait * (2 ** retry_count), 30) # Cap at 30 seconds
298
- logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying... (Attempt {retry_count}/{max_retries})")
299
- time.sleep(wait_time)
300
- if retry_count == max_retries:
301
- bookmark['summary'] = 'Summary generation failed due to rate limits.'
302
- bookmark['category'] = 'Uncategorized'
303
- break
304
- except Exception as e:
305
- logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
306
- bookmark['summary'] = 'No summary available.'
307
- bookmark['category'] = 'Uncategorized'
308
- break
309
 
310
- def parse_bookmarks(file_content):
311
- """
312
- Parse bookmarks from HTML file.
313
- """
314
- logger.info("Parsing bookmarks")
315
- try:
316
- soup = BeautifulSoup(file_content, 'html.parser')
317
- extracted_bookmarks = []
318
- for link in soup.find_all('a'):
319
- url = link.get('href')
320
- title = link.text.strip()
321
- if url and title:
322
- if url.startswith('http://') or url.startswith('https://'):
323
- extracted_bookmarks.append({'url': url, 'title': title})
324
- else:
325
- logger.info(f"Skipping non-http/https URL: {url}")
326
- logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
327
- return extracted_bookmarks
328
- except Exception as e:
329
- logger.error("Error parsing bookmarks: %s", e, exc_info=True)
330
- raise
331
  def fetch_url_info(bookmark):
332
  """
333
  Fetch information about a URL.
334
  """
335
  url = bookmark['url']
336
  if url in fetch_cache:
337
- with lock:
338
  bookmark.update(fetch_cache[url])
339
  return
340
 
@@ -378,7 +241,7 @@ def fetch_url_info(bookmark):
378
  bookmark['html_content'] = ''
379
  logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
380
  finally:
381
- with lock:
382
  fetch_cache[url] = {
383
  'etag': bookmark.get('etag'),
384
  'status_code': bookmark.get('status_code'),
@@ -388,6 +251,87 @@ def fetch_url_info(bookmark):
388
  'slow_link': bookmark.get('slow_link', False),
389
  }
390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391
  def vectorize_and_index(bookmarks_list):
392
  """
393
  Create vector embeddings for bookmarks and build FAISS index with ID mapping.
@@ -459,7 +403,7 @@ def display_bookmarks():
459
 
460
  def process_uploaded_file(file, state_bookmarks):
461
  """
462
- Process the uploaded bookmarks file.
463
  """
464
  global bookmarks, faiss_index
465
  logger.info("Processing uploaded file")
@@ -470,52 +414,63 @@ def process_uploaded_file(file, state_bookmarks):
470
 
471
  try:
472
  file_content = file.decode('utf-8')
473
- except UnicodeDecodeError as e:
474
- logger.error(f"Error decoding the file: {e}", exc_info=True)
475
- return "Error decoding the file. Please ensure it's a valid HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
476
-
477
- try:
478
  bookmarks = parse_bookmarks(file_content)
479
- except Exception as e:
480
- logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
481
- return "Error parsing the bookmarks HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
482
 
483
- if not bookmarks:
484
- logger.warning("No bookmarks found in the uploaded file")
485
- return "No bookmarks found in the uploaded file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
486
 
487
- # Assign unique IDs to bookmarks
488
- for idx, bookmark in enumerate(bookmarks):
489
- bookmark['id'] = idx
490
 
491
- # Fetch bookmark info concurrently
492
- logger.info("Fetching URL info concurrently")
493
- with ThreadPoolExecutor(max_workers=10) as executor:
494
- executor.map(fetch_url_info, bookmarks)
495
 
496
- # Process bookmarks concurrently with LLM calls
497
- logger.info("Processing bookmarks with LLM concurrently")
498
- with ThreadPoolExecutor(max_workers=1) as executor:
499
- executor.map(generate_summary_and_assign_category, bookmarks)
 
 
500
 
501
- try:
502
  faiss_index = vectorize_and_index(bookmarks)
503
- except Exception as e:
504
- logger.error(f"Error building FAISS index: {e}", exc_info=True)
505
- return "Error building search index.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
506
 
507
- message = f"✅ Successfully processed {len(bookmarks)} bookmarks."
508
- logger.info(message)
 
 
 
509
 
510
- # Generate displays and updates
511
- bookmark_html = display_bookmarks()
512
- choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
513
- for i, bookmark in enumerate(bookmarks)]
514
 
515
- # Update state
516
- state_bookmarks = bookmarks.copy()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
517
 
518
- return message, bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
519
  def delete_selected_bookmarks(selected_indices, state_bookmarks):
520
  """
521
  Delete selected bookmarks and remove their vectors from the FAISS index.
@@ -578,7 +533,6 @@ def edit_selected_bookmarks_category(selected_indices, new_category, state_bookm
578
  state_bookmarks = bookmarks.copy()
579
 
580
  return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
581
-
582
  def export_bookmarks():
583
  """
584
  Export bookmarks to an HTML file.
@@ -622,81 +576,82 @@ def chatbot_response(user_query, chat_history):
622
  try:
623
  chat_history.append({"role": "user", "content": user_query})
624
 
625
- # Implement better rate limiting
626
- max_retries = 5
627
- base_wait = 5 # Increased base wait time to 5 seconds
628
- for attempt in range(max_retries):
629
- try:
630
  with api_lock:
631
- global last_api_call_time
632
- current_time = time.time()
633
- elapsed = current_time - last_api_call_time
634
- if elapsed < base_wait:
635
- sleep_duration = base_wait - elapsed
636
- logger.info(f"Rate limiting: Waiting for {sleep_duration:.2f} seconds...")
637
- time.sleep(sleep_duration)
638
- last_api_call_time = time.time()
639
-
640
- # Search for relevant bookmarks
641
- query_vector = embedding_model.encode([user_query]).astype('float32')
642
- k = 5
643
- distances, ids = faiss_index.search(query_vector, k)
644
- ids = ids.flatten()
645
-
646
- id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
647
- matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
648
-
649
- if not matching_bookmarks:
650
- answer = "No relevant bookmarks found for your query."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651
  chat_history.append({"role": "assistant", "content": answer})
652
  return chat_history
653
 
654
- bookmarks_info = "\n".join([
655
- f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
656
- for bookmark in matching_bookmarks
657
- ])
658
-
659
- prompt = f"""
660
- A user asked: "{user_query}"
661
- Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
662
- Bookmarks:
663
- {bookmarks_info}
664
- Provide a concise and helpful response.
665
- """
666
-
667
- response = openai.ChatCompletion.create(
668
- model='llama-3.1-70b-versatile',
669
- messages=[
670
- {"role": "user", "content": prompt}
671
- ],
672
- max_tokens=300,
673
- temperature=0.7,
674
- )
675
-
676
- answer = response['choices'][0]['message']['content'].strip()
677
- logger.info("Chatbot response generated")
678
-
679
- # Add a small delay between successful requests
680
- time.sleep(base_wait)
681
-
682
- chat_history.append({"role": "assistant", "content": answer})
683
- return chat_history
684
-
685
- except openai.error.RateLimitError as e:
686
- wait_time = min(base_wait * (2 ** attempt), 30) # Cap maximum wait time at 30 seconds
687
- logger.warning(f"Rate limit reached. Attempt {attempt + 1}/{max_retries}. Waiting for {wait_time} seconds...")
688
- time.sleep(wait_time)
689
- if attempt == max_retries - 1:
690
- error_message = "⚠️ The service is currently experiencing high demand. Please try again in a few moments."
691
  chat_history.append({"role": "assistant", "content": error_message})
692
  return chat_history
693
- continue
694
 
695
  except Exception as e:
696
  error_message = f"⚠️ Error processing your query: {str(e)}"
697
  logger.error(error_message, exc_info=True)
698
  chat_history.append({"role": "assistant", "content": error_message})
699
  return chat_history
 
700
  def build_app():
701
  """
702
  Build and launch the Gradio app.
 
45
  bookmarks = []
46
  fetch_cache = {}
47
 
48
+ # Groq API Rate Limits
49
+ GROQ_RPM = 30 # requests per minute
50
+ GROQ_TPM = 40000 # tokens per minute
51
+ SECONDS_PER_MINUTE = 60
52
+ MIN_TIME_BETWEEN_CALLS = SECONDS_PER_MINUTE / GROQ_RPM # 2 seconds between calls
53
+ MAX_CONCURRENT_CALLS = 3 # Keep concurrent calls limited to prevent rate limits
54
+ TOKEN_BUFFER = 0.9 # Use 90% of token limit to be safe
55
+
56
+ # Rate limiting tools
57
+ api_lock = threading.Lock()
58
+ request_times = [] # Track request timestamps
59
+ token_usage = [] # Track token usage
60
+ LLM_SEMAPHORE = threading.Semaphore(MAX_CONCURRENT_CALLS)
61
 
62
  # Define the categories
63
  CATEGORIES = [
 
94
  openai.api_key = GROQ_API_KEY
95
  openai.api_base = "https://api.groq.com/openai/v1"
96
 
97
+ def manage_rate_limits():
98
+ """
99
+ Manage both request and token rate limits.
100
+ Returns the time to wait (if any) before making next request.
101
+ """
102
+ current_time = time.time()
103
+ minute_ago = current_time - SECONDS_PER_MINUTE
104
+
105
+ # Clean up old entries
106
+ global request_times, token_usage
107
+ request_times = [t for t in request_times if t > minute_ago]
108
+ token_usage = [t for t, _ in token_usage if t > minute_ago]
109
 
110
+ # Check request rate
111
+ if len(request_times) >= GROQ_RPM:
112
+ oldest_request = request_times[0]
113
+ return max(0, SECONDS_PER_MINUTE - (current_time - oldest_request))
114
+
115
+ # Check token rate
116
+ total_tokens = sum(tokens for _, tokens in token_usage)
117
+ if total_tokens >= GROQ_TPM * TOKEN_BUFFER:
118
+ return 1.0 # Wait a second if near token limit
119
+
120
+ return 0
121
+
122
+ def estimate_tokens(text):
123
+ """Estimate tokens in text using GPT-3 tokenizer approximation"""
124
+ return len(text.split()) * 1.3 # Rough estimate: 1.3 tokens per word
125
  def extract_main_content(soup):
126
  """
127
  Extract the main content from a webpage while filtering out boilerplate content.
 
190
  metadata['title'] = og_title.get('content', '').strip()
191
 
192
  return metadata
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
  def fetch_url_info(bookmark):
195
  """
196
  Fetch information about a URL.
197
  """
198
  url = bookmark['url']
199
  if url in fetch_cache:
200
+ with api_lock:
201
  bookmark.update(fetch_cache[url])
202
  return
203
 
 
241
  bookmark['html_content'] = ''
242
  logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
243
  finally:
244
+ with api_lock:
245
  fetch_cache[url] = {
246
  'etag': bookmark.get('etag'),
247
  'status_code': bookmark.get('status_code'),
 
251
  'slow_link': bookmark.get('slow_link', False),
252
  }
253
 
254
+ def process_bookmarks_batch(bookmarks_batch):
255
+ """Process a batch of bookmarks with controlled rate limiting"""
256
+ for bookmark in bookmarks_batch:
257
+ with LLM_SEMAPHORE:
258
+ while True:
259
+ with api_lock:
260
+ wait_time = manage_rate_limits()
261
+ if wait_time <= 0:
262
+ break
263
+ logger.info(f"Rate limiting: Waiting for {wait_time:.2f} seconds...")
264
+ time.sleep(wait_time)
265
+
266
+ try:
267
+ html_content = bookmark.get('html_content', '')
268
+ soup = BeautifulSoup(html_content, 'html.parser')
269
+ metadata = get_page_metadata(soup)
270
+ main_content = extract_main_content(soup)
271
+
272
+ # Prepare shortened prompt to reduce tokens
273
+ content = f"Title: {metadata['title']}\nURL: {bookmark['url']}"
274
+ if len(main_content) > 1000: # Limit content length
275
+ main_content = main_content[:1000] + "..."
276
+
277
+ prompt = f"""Analyze this webpage:
278
+ {content}
279
+ Content: {main_content}
280
+ Provide in format:
281
+ Summary: [2 sentences max]
282
+ Category: [{', '.join(CATEGORIES)}]"""
283
+
284
+ # Estimate tokens
285
+ input_tokens = estimate_tokens(prompt)
286
+ max_tokens = 150
287
+ total_tokens = input_tokens + max_tokens
288
+
289
+ # Make API call
290
+ response = openai.ChatCompletion.create(
291
+ model='llama-3.1-70b-versatile',
292
+ messages=[{"role": "user", "content": prompt}],
293
+ max_tokens=max_tokens,
294
+ temperature=0.5,
295
+ )
296
+
297
+ # Track rate limits
298
+ with api_lock:
299
+ current_time = time.time()
300
+ request_times.append(current_time)
301
+ token_usage.append((current_time, total_tokens))
302
+
303
+ content = response['choices'][0]['message']['content'].strip()
304
+
305
+ # Process response
306
+ summary_match = re.search(r"Summary:\s*(.*?)(?:\n|$)", content)
307
+ category_match = re.search(r"Category:\s*(.*?)(?:\n|$)", content)
308
+
309
+ bookmark['summary'] = summary_match.group(1).strip() if summary_match else 'No summary available.'
310
+
311
+ if category_match:
312
+ category = category_match.group(1).strip().strip('"')
313
+ bookmark['category'] = category if category in CATEGORIES else 'Uncategorized'
314
+ else:
315
+ bookmark['category'] = 'Uncategorized'
316
+
317
+ # Quick category validation
318
+ if 'social media' in bookmark['url'].lower() or 'twitter' in bookmark['url'].lower() or 'x.com' in bookmark['url'].lower():
319
+ bookmark['category'] = 'Social Media'
320
+ elif 'wikipedia' in bookmark['url'].lower():
321
+ bookmark['category'] = 'Reference and Knowledge Bases'
322
+
323
+ logger.info(f"Successfully processed bookmark: {bookmark['url']}")
324
+ break
325
+
326
+ except openai.error.RateLimitError as e:
327
+ wait_time = int(e.headers.get('Retry-After', 5))
328
+ logger.warning(f"Rate limit hit, waiting {wait_time} seconds...")
329
+ time.sleep(wait_time)
330
+ except Exception as e:
331
+ logger.error(f"Error processing bookmark: {e}")
332
+ bookmark['summary'] = 'Processing failed.'
333
+ bookmark['category'] = 'Uncategorized'
334
+ break
335
  def vectorize_and_index(bookmarks_list):
336
  """
337
  Create vector embeddings for bookmarks and build FAISS index with ID mapping.
 
403
 
404
  def process_uploaded_file(file, state_bookmarks):
405
  """
406
+ Process uploaded file with optimized batch processing
407
  """
408
  global bookmarks, faiss_index
409
  logger.info("Processing uploaded file")
 
414
 
415
  try:
416
  file_content = file.decode('utf-8')
 
 
 
 
 
417
  bookmarks = parse_bookmarks(file_content)
 
 
 
418
 
419
+ if not bookmarks:
420
+ return "No bookmarks found in the file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
 
421
 
422
+ # Assign IDs
423
+ for idx, bookmark in enumerate(bookmarks):
424
+ bookmark['id'] = idx
425
 
426
+ # First fetch all URLs concurrently
427
+ with ThreadPoolExecutor(max_workers=10) as executor:
428
+ executor.map(fetch_url_info, bookmarks)
 
429
 
430
+ # Process bookmarks in parallel with controlled concurrency
431
+ batch_size = min(MAX_CONCURRENT_CALLS, len(bookmarks))
432
+ batches = [bookmarks[i:i + batch_size] for i in range(0, len(bookmarks), batch_size)]
433
+
434
+ with ThreadPoolExecutor(max_workers=MAX_CONCURRENT_CALLS) as executor:
435
+ executor.map(process_bookmarks_batch, batches)
436
 
437
+ # Build FAISS index
438
  faiss_index = vectorize_and_index(bookmarks)
 
 
 
439
 
440
+ # Update display and state
441
+ bookmark_html = display_bookmarks()
442
+ choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
443
+ for i, bookmark in enumerate(bookmarks)]
444
+ state_bookmarks = bookmarks.copy()
445
 
446
+ return "✅ Processing complete!", bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
 
 
 
447
 
448
+ except Exception as e:
449
+ logger.error(f"Error processing file: {e}")
450
+ return f"Error processing file: {str(e)}", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
451
+
452
+ def parse_bookmarks(file_content):
453
+ """
454
+ Parse bookmarks from HTML file.
455
+ """
456
+ logger.info("Parsing bookmarks")
457
+ try:
458
+ soup = BeautifulSoup(file_content, 'html.parser')
459
+ extracted_bookmarks = []
460
+ for link in soup.find_all('a'):
461
+ url = link.get('href')
462
+ title = link.text.strip()
463
+ if url and title:
464
+ if url.startswith('http://') or url.startswith('https://'):
465
+ extracted_bookmarks.append({'url': url, 'title': title})
466
+ else:
467
+ logger.info(f"Skipping non-http/https URL: {url}")
468
+ logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
469
+ return extracted_bookmarks
470
+ except Exception as e:
471
+ logger.error("Error parsing bookmarks: %s", e, exc_info=True)
472
+ raise
473
 
 
474
  def delete_selected_bookmarks(selected_indices, state_bookmarks):
475
  """
476
  Delete selected bookmarks and remove their vectors from the FAISS index.
 
533
  state_bookmarks = bookmarks.copy()
534
 
535
  return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
 
536
  def export_bookmarks():
537
  """
538
  Export bookmarks to an HTML file.
 
576
  try:
577
  chat_history.append({"role": "user", "content": user_query})
578
 
579
+ with LLM_SEMAPHORE:
580
+ while True:
 
 
 
581
  with api_lock:
582
+ wait_time = manage_rate_limits()
583
+ if wait_time <= 0:
584
+ break
585
+ logger.info(f"Rate limiting: Waiting for {wait_time:.2f} seconds...")
586
+ time.sleep(wait_time)
587
+
588
+ try:
589
+ # Search for relevant bookmarks
590
+ query_vector = embedding_model.encode([user_query]).astype('float32')
591
+ k = 5
592
+ distances, ids = faiss_index.search(query_vector, k)
593
+ ids = ids.flatten()
594
+
595
+ id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
596
+ matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
597
+
598
+ if not matching_bookmarks:
599
+ answer = "No relevant bookmarks found for your query."
600
+ chat_history.append({"role": "assistant", "content": answer})
601
+ return chat_history
602
+
603
+ # Prepare concise prompt
604
+ bookmarks_info = "\n".join([
605
+ f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
606
+ for bookmark in matching_bookmarks
607
+ ])
608
+
609
+ prompt = f"""User Query: "{user_query}"
610
+ Found Bookmarks:
611
+ {bookmarks_info}
612
+ Provide a helpful, concise response."""
613
+
614
+ # Estimate tokens and make API call
615
+ input_tokens = estimate_tokens(prompt)
616
+ max_tokens = 300
617
+ total_tokens = input_tokens + max_tokens
618
+
619
+ response = openai.ChatCompletion.create(
620
+ model='llama-3.1-70b-versatile',
621
+ messages=[{"role": "user", "content": prompt}],
622
+ max_tokens=max_tokens,
623
+ temperature=0.7,
624
+ )
625
+
626
+ # Track rate limits
627
+ with api_lock:
628
+ current_time = time.time()
629
+ request_times.append(current_time)
630
+ token_usage.append((current_time, total_tokens))
631
+
632
+ answer = response['choices'][0]['message']['content'].strip()
633
+ logger.info("Chatbot response generated")
634
+
635
  chat_history.append({"role": "assistant", "content": answer})
636
  return chat_history
637
 
638
+ except openai.error.RateLimitError as e:
639
+ wait_time = int(e.headers.get('Retry-After', 5))
640
+ logger.warning(f"Rate limit hit, waiting {wait_time} seconds...")
641
+ time.sleep(wait_time)
642
+ continue
643
+ except Exception as e:
644
+ error_message = f"⚠️ Error processing your query: {str(e)}"
645
+ logger.error(error_message, exc_info=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646
  chat_history.append({"role": "assistant", "content": error_message})
647
  return chat_history
 
648
 
649
  except Exception as e:
650
  error_message = f"⚠️ Error processing your query: {str(e)}"
651
  logger.error(error_message, exc_info=True)
652
  chat_history.append({"role": "assistant", "content": error_message})
653
  return chat_history
654
+
655
  def build_app():
656
  """
657
  Build and launch the Gradio app.