Update app.py
Browse files
app.py
CHANGED
|
@@ -163,17 +163,18 @@ def generate_summary_and_assign_category(bookmark):
|
|
| 163 |
|
| 164 |
max_retries = 3
|
| 165 |
retry_count = 0
|
|
|
|
| 166 |
|
| 167 |
while retry_count < max_retries:
|
| 168 |
try:
|
| 169 |
-
# Rate Limiting Logic
|
| 170 |
with api_lock:
|
| 171 |
global last_api_call_time
|
| 172 |
current_time = time.time()
|
| 173 |
elapsed = current_time - last_api_call_time
|
| 174 |
-
if elapsed <
|
| 175 |
-
sleep_duration =
|
| 176 |
-
logger.info(f"
|
| 177 |
time.sleep(sleep_duration)
|
| 178 |
last_api_call_time = time.time()
|
| 179 |
|
|
@@ -244,7 +245,7 @@ Category: [One category]
|
|
| 244 |
tokens_per_minute = 40000
|
| 245 |
tokens_per_second = tokens_per_minute / 60
|
| 246 |
required_delay = total_tokens / tokens_per_second
|
| 247 |
-
sleep_time = max(required_delay,
|
| 248 |
|
| 249 |
response = openai.ChatCompletion.create(
|
| 250 |
model='llama-3.1-70b-versatile',
|
|
@@ -285,14 +286,21 @@ Category: [One category]
|
|
| 285 |
bookmark['category'] = 'Reference and Knowledge Bases'
|
| 286 |
|
| 287 |
logger.info("Successfully generated summary and assigned category")
|
|
|
|
|
|
|
| 288 |
time.sleep(sleep_time)
|
| 289 |
break
|
| 290 |
|
| 291 |
except openai.error.RateLimitError as e:
|
| 292 |
retry_count += 1
|
| 293 |
-
|
|
|
|
| 294 |
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying... (Attempt {retry_count}/{max_retries})")
|
| 295 |
time.sleep(wait_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
except Exception as e:
|
| 297 |
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
| 298 |
bookmark['summary'] = 'No summary available.'
|
|
@@ -320,7 +328,6 @@ def parse_bookmarks(file_content):
|
|
| 320 |
except Exception as e:
|
| 321 |
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
|
| 322 |
raise
|
| 323 |
-
|
| 324 |
def fetch_url_info(bookmark):
|
| 325 |
"""
|
| 326 |
Fetch information about a URL.
|
|
@@ -509,7 +516,6 @@ def process_uploaded_file(file, state_bookmarks):
|
|
| 509 |
state_bookmarks = bookmarks.copy()
|
| 510 |
|
| 511 |
return message, bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
|
| 512 |
-
|
| 513 |
def delete_selected_bookmarks(selected_indices, state_bookmarks):
|
| 514 |
"""
|
| 515 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
|
@@ -616,35 +622,41 @@ def chatbot_response(user_query, chat_history):
|
|
| 616 |
try:
|
| 617 |
chat_history.append({"role": "user", "content": user_query})
|
| 618 |
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 648 |
A user asked: "{user_query}"
|
| 649 |
Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
|
| 650 |
Bookmarks:
|
|
@@ -652,39 +664,34 @@ Bookmarks:
|
|
| 652 |
Provide a concise and helpful response.
|
| 653 |
"""
|
| 654 |
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
tokens_per_second = tokens_per_minute / 60
|
| 664 |
-
required_delay = total_tokens / tokens_per_second
|
| 665 |
-
sleep_time = max(required_delay, 2)
|
| 666 |
-
|
| 667 |
-
response = openai.ChatCompletion.create(
|
| 668 |
-
model='llama-3.1-70b-versatile',
|
| 669 |
-
messages=[
|
| 670 |
-
{"role": "user", "content": prompt}
|
| 671 |
-
],
|
| 672 |
-
max_tokens=int(max_tokens),
|
| 673 |
-
temperature=0.7,
|
| 674 |
-
)
|
| 675 |
-
|
| 676 |
-
answer = response['choices'][0]['message']['content'].strip()
|
| 677 |
-
logger.info("Chatbot response generated")
|
| 678 |
-
time.sleep(sleep_time)
|
| 679 |
|
| 680 |
-
|
| 681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
|
| 683 |
-
except openai.error.RateLimitError as e:
|
| 684 |
-
wait_time = int(e.headers.get("Retry-After", 5))
|
| 685 |
-
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
|
| 686 |
-
time.sleep(wait_time)
|
| 687 |
-
return chatbot_response(user_query, chat_history)
|
| 688 |
except Exception as e:
|
| 689 |
error_message = f"⚠️ Error processing your query: {str(e)}"
|
| 690 |
logger.error(error_message, exc_info=True)
|
|
|
|
| 163 |
|
| 164 |
max_retries = 3
|
| 165 |
retry_count = 0
|
| 166 |
+
base_wait = 5 # Increased base wait time to 5 seconds
|
| 167 |
|
| 168 |
while retry_count < max_retries:
|
| 169 |
try:
|
| 170 |
+
# Rate Limiting Logic - Modified
|
| 171 |
with api_lock:
|
| 172 |
global last_api_call_time
|
| 173 |
current_time = time.time()
|
| 174 |
elapsed = current_time - last_api_call_time
|
| 175 |
+
if elapsed < base_wait:
|
| 176 |
+
sleep_duration = base_wait - elapsed
|
| 177 |
+
logger.info(f"Rate limiting: Waiting for {sleep_duration:.2f} seconds...")
|
| 178 |
time.sleep(sleep_duration)
|
| 179 |
last_api_call_time = time.time()
|
| 180 |
|
|
|
|
| 245 |
tokens_per_minute = 40000
|
| 246 |
tokens_per_second = tokens_per_minute / 60
|
| 247 |
required_delay = total_tokens / tokens_per_second
|
| 248 |
+
sleep_time = max(required_delay, base_wait) # Use at least base_wait seconds
|
| 249 |
|
| 250 |
response = openai.ChatCompletion.create(
|
| 251 |
model='llama-3.1-70b-versatile',
|
|
|
|
| 286 |
bookmark['category'] = 'Reference and Knowledge Bases'
|
| 287 |
|
| 288 |
logger.info("Successfully generated summary and assigned category")
|
| 289 |
+
|
| 290 |
+
# Add consistent delay after successful processing
|
| 291 |
time.sleep(sleep_time)
|
| 292 |
break
|
| 293 |
|
| 294 |
except openai.error.RateLimitError as e:
|
| 295 |
retry_count += 1
|
| 296 |
+
# Use exponential backoff with a maximum wait time
|
| 297 |
+
wait_time = min(base_wait * (2 ** retry_count), 30) # Cap at 30 seconds
|
| 298 |
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying... (Attempt {retry_count}/{max_retries})")
|
| 299 |
time.sleep(wait_time)
|
| 300 |
+
if retry_count == max_retries:
|
| 301 |
+
bookmark['summary'] = 'Summary generation failed due to rate limits.'
|
| 302 |
+
bookmark['category'] = 'Uncategorized'
|
| 303 |
+
break
|
| 304 |
except Exception as e:
|
| 305 |
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
| 306 |
bookmark['summary'] = 'No summary available.'
|
|
|
|
| 328 |
except Exception as e:
|
| 329 |
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
|
| 330 |
raise
|
|
|
|
| 331 |
def fetch_url_info(bookmark):
|
| 332 |
"""
|
| 333 |
Fetch information about a URL.
|
|
|
|
| 516 |
state_bookmarks = bookmarks.copy()
|
| 517 |
|
| 518 |
return message, bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
|
|
|
|
| 519 |
def delete_selected_bookmarks(selected_indices, state_bookmarks):
|
| 520 |
"""
|
| 521 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
|
|
|
| 622 |
try:
|
| 623 |
chat_history.append({"role": "user", "content": user_query})
|
| 624 |
|
| 625 |
+
# Implement better rate limiting
|
| 626 |
+
max_retries = 5
|
| 627 |
+
base_wait = 5 # Increased base wait time to 5 seconds
|
| 628 |
+
for attempt in range(max_retries):
|
| 629 |
+
try:
|
| 630 |
+
with api_lock:
|
| 631 |
+
global last_api_call_time
|
| 632 |
+
current_time = time.time()
|
| 633 |
+
elapsed = current_time - last_api_call_time
|
| 634 |
+
if elapsed < base_wait:
|
| 635 |
+
sleep_duration = base_wait - elapsed
|
| 636 |
+
logger.info(f"Rate limiting: Waiting for {sleep_duration:.2f} seconds...")
|
| 637 |
+
time.sleep(sleep_duration)
|
| 638 |
+
last_api_call_time = time.time()
|
| 639 |
+
|
| 640 |
+
# Search for relevant bookmarks
|
| 641 |
+
query_vector = embedding_model.encode([user_query]).astype('float32')
|
| 642 |
+
k = 5
|
| 643 |
+
distances, ids = faiss_index.search(query_vector, k)
|
| 644 |
+
ids = ids.flatten()
|
| 645 |
+
|
| 646 |
+
id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
|
| 647 |
+
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
|
| 648 |
+
|
| 649 |
+
if not matching_bookmarks:
|
| 650 |
+
answer = "No relevant bookmarks found for your query."
|
| 651 |
+
chat_history.append({"role": "assistant", "content": answer})
|
| 652 |
+
return chat_history
|
| 653 |
+
|
| 654 |
+
bookmarks_info = "\n".join([
|
| 655 |
+
f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
|
| 656 |
+
for bookmark in matching_bookmarks
|
| 657 |
+
])
|
| 658 |
+
|
| 659 |
+
prompt = f"""
|
| 660 |
A user asked: "{user_query}"
|
| 661 |
Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
|
| 662 |
Bookmarks:
|
|
|
|
| 664 |
Provide a concise and helpful response.
|
| 665 |
"""
|
| 666 |
|
| 667 |
+
response = openai.ChatCompletion.create(
|
| 668 |
+
model='llama-3.1-70b-versatile',
|
| 669 |
+
messages=[
|
| 670 |
+
{"role": "user", "content": prompt}
|
| 671 |
+
],
|
| 672 |
+
max_tokens=300,
|
| 673 |
+
temperature=0.7,
|
| 674 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 675 |
|
| 676 |
+
answer = response['choices'][0]['message']['content'].strip()
|
| 677 |
+
logger.info("Chatbot response generated")
|
| 678 |
+
|
| 679 |
+
# Add a small delay between successful requests
|
| 680 |
+
time.sleep(base_wait)
|
| 681 |
+
|
| 682 |
+
chat_history.append({"role": "assistant", "content": answer})
|
| 683 |
+
return chat_history
|
| 684 |
+
|
| 685 |
+
except openai.error.RateLimitError as e:
|
| 686 |
+
wait_time = min(base_wait * (2 ** attempt), 30) # Cap maximum wait time at 30 seconds
|
| 687 |
+
logger.warning(f"Rate limit reached. Attempt {attempt + 1}/{max_retries}. Waiting for {wait_time} seconds...")
|
| 688 |
+
time.sleep(wait_time)
|
| 689 |
+
if attempt == max_retries - 1:
|
| 690 |
+
error_message = "⚠️ The service is currently experiencing high demand. Please try again in a few moments."
|
| 691 |
+
chat_history.append({"role": "assistant", "content": error_message})
|
| 692 |
+
return chat_history
|
| 693 |
+
continue
|
| 694 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
except Exception as e:
|
| 696 |
error_message = f"⚠️ Error processing your query: {str(e)}"
|
| 697 |
logger.error(error_message, exc_info=True)
|