Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -45,19 +45,8 @@ faiss_index = None
|
|
45 |
bookmarks = []
|
46 |
fetch_cache = {}
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
GROQ_TPM = 40000 # tokens per minute
|
51 |
-
SECONDS_PER_MINUTE = 60
|
52 |
-
MIN_TIME_BETWEEN_CALLS = SECONDS_PER_MINUTE / GROQ_RPM # 2 seconds between calls
|
53 |
-
MAX_CONCURRENT_CALLS = 3 # Keep concurrent calls limited to prevent rate limits
|
54 |
-
TOKEN_BUFFER = 0.9 # Use 90% of token limit to be safe
|
55 |
-
|
56 |
-
# Rate limiting tools
|
57 |
-
api_lock = threading.Lock()
|
58 |
-
request_times = [] # Track request timestamps
|
59 |
-
token_usage = [] # Track token usage
|
60 |
-
LLM_SEMAPHORE = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
61 |
|
62 |
# Define the categories
|
63 |
CATEGORIES = [
|
@@ -94,34 +83,10 @@ if not GROQ_API_KEY:
|
|
94 |
openai.api_key = GROQ_API_KEY
|
95 |
openai.api_base = "https://api.groq.com/openai/v1"
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
Returns the time to wait (if any) before making next request.
|
101 |
-
"""
|
102 |
-
current_time = time.time()
|
103 |
-
minute_ago = current_time - SECONDS_PER_MINUTE
|
104 |
-
|
105 |
-
# Clean up old entries
|
106 |
-
global request_times, token_usage
|
107 |
-
request_times = [t for t in request_times if t > minute_ago]
|
108 |
-
token_usage = [t for t, _ in token_usage if t > minute_ago]
|
109 |
-
|
110 |
-
# Check request rate
|
111 |
-
if len(request_times) >= GROQ_RPM:
|
112 |
-
oldest_request = request_times[0]
|
113 |
-
return max(0, SECONDS_PER_MINUTE - (current_time - oldest_request))
|
114 |
-
|
115 |
-
# Check token rate
|
116 |
-
total_tokens = sum(tokens for _, tokens in token_usage)
|
117 |
-
if total_tokens >= GROQ_TPM * TOKEN_BUFFER:
|
118 |
-
return 1.0 # Wait a second if near token limit
|
119 |
-
|
120 |
-
return 0
|
121 |
|
122 |
-
def estimate_tokens(text):
|
123 |
-
"""Estimate tokens in text using GPT-3 tokenizer approximation"""
|
124 |
-
return len(text.split()) * 1.3 # Rough estimate: 1.3 tokens per word
|
125 |
def extract_main_content(soup):
|
126 |
"""
|
127 |
Extract the main content from a webpage while filtering out boilerplate content.
|
@@ -191,13 +156,199 @@ def get_page_metadata(soup):
|
|
191 |
|
192 |
return metadata
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
def fetch_url_info(bookmark):
|
195 |
"""
|
196 |
Fetch information about a URL.
|
197 |
"""
|
198 |
url = bookmark['url']
|
199 |
if url in fetch_cache:
|
200 |
-
with
|
201 |
bookmark.update(fetch_cache[url])
|
202 |
return
|
203 |
|
@@ -216,20 +367,17 @@ def fetch_url_info(bookmark):
|
|
216 |
|
217 |
if response.status_code >= 500:
|
218 |
bookmark['dead_link'] = True
|
219 |
-
bookmark['
|
220 |
-
bookmark['html_content'] = ''
|
221 |
logger.warning(f"Dead link detected: {url} with status {response.status_code}")
|
222 |
else:
|
223 |
bookmark['dead_link'] = False
|
224 |
bookmark['html_content'] = content
|
225 |
-
bookmark['description'] = ''
|
226 |
logger.info(f"Fetched information for {url}")
|
227 |
|
228 |
except requests.exceptions.Timeout:
|
229 |
bookmark['dead_link'] = False
|
230 |
bookmark['etag'] = 'N/A'
|
231 |
bookmark['status_code'] = 'Timeout'
|
232 |
-
bookmark['description'] = ''
|
233 |
bookmark['html_content'] = ''
|
234 |
bookmark['slow_link'] = True
|
235 |
logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.")
|
@@ -237,11 +385,23 @@ def fetch_url_info(bookmark):
|
|
237 |
bookmark['dead_link'] = True
|
238 |
bookmark['etag'] = 'N/A'
|
239 |
bookmark['status_code'] = 'Error'
|
240 |
-
bookmark['description'] = ''
|
241 |
bookmark['html_content'] = ''
|
242 |
logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
|
243 |
finally:
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
fetch_cache[url] = {
|
246 |
'etag': bookmark.get('etag'),
|
247 |
'status_code': bookmark.get('status_code'),
|
@@ -251,87 +411,6 @@ def fetch_url_info(bookmark):
|
|
251 |
'slow_link': bookmark.get('slow_link', False),
|
252 |
}
|
253 |
|
254 |
-
def process_bookmarks_batch(bookmarks_batch):
|
255 |
-
"""Process a batch of bookmarks with controlled rate limiting"""
|
256 |
-
for bookmark in bookmarks_batch:
|
257 |
-
with LLM_SEMAPHORE:
|
258 |
-
while True:
|
259 |
-
with api_lock:
|
260 |
-
wait_time = manage_rate_limits()
|
261 |
-
if wait_time <= 0:
|
262 |
-
break
|
263 |
-
logger.info(f"Rate limiting: Waiting for {wait_time:.2f} seconds...")
|
264 |
-
time.sleep(wait_time)
|
265 |
-
|
266 |
-
try:
|
267 |
-
html_content = bookmark.get('html_content', '')
|
268 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
269 |
-
metadata = get_page_metadata(soup)
|
270 |
-
main_content = extract_main_content(soup)
|
271 |
-
|
272 |
-
# Prepare shortened prompt to reduce tokens
|
273 |
-
content = f"Title: {metadata['title']}\nURL: {bookmark['url']}"
|
274 |
-
if len(main_content) > 1000: # Limit content length
|
275 |
-
main_content = main_content[:1000] + "..."
|
276 |
-
|
277 |
-
prompt = f"""Analyze this webpage:
|
278 |
-
{content}
|
279 |
-
Content: {main_content}
|
280 |
-
Provide in format:
|
281 |
-
Summary: [2 sentences max]
|
282 |
-
Category: [{', '.join(CATEGORIES)}]"""
|
283 |
-
|
284 |
-
# Estimate tokens
|
285 |
-
input_tokens = estimate_tokens(prompt)
|
286 |
-
max_tokens = 150
|
287 |
-
total_tokens = input_tokens + max_tokens
|
288 |
-
|
289 |
-
# Make API call
|
290 |
-
response = openai.ChatCompletion.create(
|
291 |
-
model='llama-3.1-70b-versatile',
|
292 |
-
messages=[{"role": "user", "content": prompt}],
|
293 |
-
max_tokens=max_tokens,
|
294 |
-
temperature=0.5,
|
295 |
-
)
|
296 |
-
|
297 |
-
# Track rate limits
|
298 |
-
with api_lock:
|
299 |
-
current_time = time.time()
|
300 |
-
request_times.append(current_time)
|
301 |
-
token_usage.append((current_time, total_tokens))
|
302 |
-
|
303 |
-
content = response['choices'][0]['message']['content'].strip()
|
304 |
-
|
305 |
-
# Process response
|
306 |
-
summary_match = re.search(r"Summary:\s*(.*?)(?:\n|$)", content)
|
307 |
-
category_match = re.search(r"Category:\s*(.*?)(?:\n|$)", content)
|
308 |
-
|
309 |
-
bookmark['summary'] = summary_match.group(1).strip() if summary_match else 'No summary available.'
|
310 |
-
|
311 |
-
if category_match:
|
312 |
-
category = category_match.group(1).strip().strip('"')
|
313 |
-
bookmark['category'] = category if category in CATEGORIES else 'Uncategorized'
|
314 |
-
else:
|
315 |
-
bookmark['category'] = 'Uncategorized'
|
316 |
-
|
317 |
-
# Quick category validation
|
318 |
-
if 'social media' in bookmark['url'].lower() or 'twitter' in bookmark['url'].lower() or 'x.com' in bookmark['url'].lower():
|
319 |
-
bookmark['category'] = 'Social Media'
|
320 |
-
elif 'wikipedia' in bookmark['url'].lower():
|
321 |
-
bookmark['category'] = 'Reference and Knowledge Bases'
|
322 |
-
|
323 |
-
logger.info(f"Successfully processed bookmark: {bookmark['url']}")
|
324 |
-
break
|
325 |
-
|
326 |
-
except openai.error.RateLimitError as e:
|
327 |
-
wait_time = int(e.headers.get('Retry-After', 5))
|
328 |
-
logger.warning(f"Rate limit hit, waiting {wait_time} seconds...")
|
329 |
-
time.sleep(wait_time)
|
330 |
-
except Exception as e:
|
331 |
-
logger.error(f"Error processing bookmark: {e}")
|
332 |
-
bookmark['summary'] = 'Processing failed.'
|
333 |
-
bookmark['category'] = 'Uncategorized'
|
334 |
-
break
|
335 |
def vectorize_and_index(bookmarks_list):
|
336 |
"""
|
337 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
@@ -339,7 +418,8 @@ def vectorize_and_index(bookmarks_list):
|
|
339 |
global faiss_index
|
340 |
logger.info("Vectorizing summaries and building FAISS index")
|
341 |
try:
|
342 |
-
|
|
|
343 |
embeddings = embedding_model.encode(summaries)
|
344 |
dimension = embeddings.shape[1]
|
345 |
index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
|
@@ -364,19 +444,26 @@ def display_bookmarks():
|
|
364 |
status = "❌ Dead Link"
|
365 |
card_style = "border: 2px solid red;"
|
366 |
text_style = "color: white;"
|
|
|
|
|
|
|
|
|
|
|
367 |
elif bookmark.get('slow_link'):
|
368 |
status = "⏳ Slow Response"
|
369 |
card_style = "border: 2px solid orange;"
|
370 |
text_style = "color: white;"
|
|
|
|
|
371 |
else:
|
372 |
status = "✅ Active"
|
373 |
card_style = "border: 2px solid green;"
|
374 |
text_style = "color: white;"
|
|
|
375 |
|
376 |
title = bookmark['title']
|
377 |
url = bookmark['url']
|
378 |
etag = bookmark.get('etag', 'N/A')
|
379 |
-
summary = bookmark.get('summary', '')
|
380 |
category = bookmark.get('category', 'Uncategorized')
|
381 |
|
382 |
# Escape HTML content to prevent XSS attacks
|
@@ -403,7 +490,7 @@ def display_bookmarks():
|
|
403 |
|
404 |
def process_uploaded_file(file, state_bookmarks):
|
405 |
"""
|
406 |
-
Process uploaded file
|
407 |
"""
|
408 |
global bookmarks, faiss_index
|
409 |
logger.info("Processing uploaded file")
|
@@ -414,62 +501,52 @@ def process_uploaded_file(file, state_bookmarks):
|
|
414 |
|
415 |
try:
|
416 |
file_content = file.decode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
417 |
bookmarks = parse_bookmarks(file_content)
|
|
|
|
|
|
|
418 |
|
419 |
-
|
420 |
-
|
|
|
421 |
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
|
426 |
-
|
427 |
-
|
428 |
-
|
|
|
429 |
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT_CALLS) as executor:
|
435 |
-
executor.map(process_bookmarks_batch, batches)
|
436 |
|
437 |
-
|
438 |
faiss_index = vectorize_and_index(bookmarks)
|
|
|
|
|
|
|
439 |
|
440 |
-
|
441 |
-
|
442 |
-
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
443 |
-
for i, bookmark in enumerate(bookmarks)]
|
444 |
-
state_bookmarks = bookmarks.copy()
|
445 |
|
446 |
-
|
|
|
|
|
|
|
447 |
|
448 |
-
|
449 |
-
|
450 |
-
return f"Error processing file: {str(e)}", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
451 |
|
452 |
-
|
453 |
-
"""
|
454 |
-
Parse bookmarks from HTML file.
|
455 |
-
"""
|
456 |
-
logger.info("Parsing bookmarks")
|
457 |
-
try:
|
458 |
-
soup = BeautifulSoup(file_content, 'html.parser')
|
459 |
-
extracted_bookmarks = []
|
460 |
-
for link in soup.find_all('a'):
|
461 |
-
url = link.get('href')
|
462 |
-
title = link.text.strip()
|
463 |
-
if url and title:
|
464 |
-
if url.startswith('http://') or url.startswith('https://'):
|
465 |
-
extracted_bookmarks.append({'url': url, 'title': title})
|
466 |
-
else:
|
467 |
-
logger.info(f"Skipping non-http/https URL: {url}")
|
468 |
-
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
|
469 |
-
return extracted_bookmarks
|
470 |
-
except Exception as e:
|
471 |
-
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
|
472 |
-
raise
|
473 |
|
474 |
def delete_selected_bookmarks(selected_indices, state_bookmarks):
|
475 |
"""
|
@@ -533,6 +610,7 @@ def edit_selected_bookmarks_category(selected_indices, new_category, state_bookm
|
|
533 |
state_bookmarks = bookmarks.copy()
|
534 |
|
535 |
return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
|
|
|
536 |
def export_bookmarks():
|
537 |
"""
|
538 |
Export bookmarks to an HTML file.
|
@@ -576,76 +654,75 @@ def chatbot_response(user_query, chat_history):
|
|
576 |
try:
|
577 |
chat_history.append({"role": "user", "content": user_query})
|
578 |
|
579 |
-
with
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
{bookmarks_info}
|
612 |
-
Provide a helpful
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
continue
|
643 |
-
except Exception as e:
|
644 |
-
error_message = f"⚠️ Error processing your query: {str(e)}"
|
645 |
-
logger.error(error_message, exc_info=True)
|
646 |
-
chat_history.append({"role": "assistant", "content": error_message})
|
647 |
-
return chat_history
|
648 |
|
|
|
|
|
|
|
|
|
|
|
649 |
except Exception as e:
|
650 |
error_message = f"⚠️ Error processing your query: {str(e)}"
|
651 |
logger.error(error_message, exc_info=True)
|
@@ -767,13 +844,13 @@ Navigate through the tabs to explore each feature in detail.
|
|
767 |
""")
|
768 |
|
769 |
manage_output = gr.Textbox(label="🔄 Status", interactive=False)
|
770 |
-
|
771 |
-
#
|
772 |
bookmark_selector = gr.CheckboxGroup(
|
773 |
label="✅ Select Bookmarks",
|
774 |
choices=[]
|
775 |
)
|
776 |
-
|
777 |
new_category = gr.Dropdown(
|
778 |
label="🆕 New Category",
|
779 |
choices=CATEGORIES,
|
@@ -832,4 +909,4 @@ Navigate through the tabs to explore each feature in detail.
|
|
832 |
print(f"Error building the app: {e}")
|
833 |
|
834 |
if __name__ == "__main__":
|
835 |
-
build_app()
|
|
|
45 |
bookmarks = []
|
46 |
fetch_cache = {}
|
47 |
|
48 |
+
# Lock for thread-safe operations
|
49 |
+
lock = threading.Lock()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Define the categories
|
52 |
CATEGORIES = [
|
|
|
83 |
openai.api_key = GROQ_API_KEY
|
84 |
openai.api_base = "https://api.groq.com/openai/v1"
|
85 |
|
86 |
+
# Initialize global variables for rate limiting
|
87 |
+
api_lock = threading.Lock()
|
88 |
+
last_api_call_time = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
90 |
def extract_main_content(soup):
|
91 |
"""
|
92 |
Extract the main content from a webpage while filtering out boilerplate content.
|
|
|
156 |
|
157 |
return metadata
|
158 |
|
159 |
+
def generate_summary_and_assign_category(bookmark):
|
160 |
+
"""
|
161 |
+
Generate a concise summary and assign a category using a single LLM call.
|
162 |
+
For slow links, always provide a summary.
|
163 |
+
For dead links, provide a summary if possible; otherwise, ignore.
|
164 |
+
"""
|
165 |
+
logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}")
|
166 |
+
|
167 |
+
max_retries = 3
|
168 |
+
retry_count = 0
|
169 |
+
|
170 |
+
while retry_count < max_retries:
|
171 |
+
try:
|
172 |
+
# Rate Limiting Logic
|
173 |
+
with api_lock:
|
174 |
+
global last_api_call_time
|
175 |
+
current_time = time.time()
|
176 |
+
elapsed = current_time - last_api_call_time
|
177 |
+
if elapsed < 2:
|
178 |
+
sleep_duration = 2 - elapsed
|
179 |
+
logger.info(f"Sleeping for {sleep_duration:.2f} seconds to respect rate limits.")
|
180 |
+
time.sleep(sleep_duration)
|
181 |
+
last_api_call_time = time.time()
|
182 |
+
|
183 |
+
html_content = bookmark.get('html_content', '')
|
184 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
185 |
+
metadata = get_page_metadata(soup)
|
186 |
+
main_content = extract_main_content(soup)
|
187 |
+
|
188 |
+
# Prepare content for the prompt
|
189 |
+
content_parts = []
|
190 |
+
if metadata['title']:
|
191 |
+
content_parts.append(f"Title: {metadata['title']}")
|
192 |
+
if metadata['description']:
|
193 |
+
content_parts.append(f"Description: {metadata['description']}")
|
194 |
+
if metadata['keywords']:
|
195 |
+
content_parts.append(f"Keywords: {metadata['keywords']}")
|
196 |
+
if main_content:
|
197 |
+
content_parts.append(f"Main Content: {main_content}")
|
198 |
+
|
199 |
+
content_text = '\n'.join(content_parts)
|
200 |
+
|
201 |
+
# Detect insufficient or erroneous content
|
202 |
+
error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
|
203 |
+
if not content_text or len(content_text.split()) < 50:
|
204 |
+
use_prior_knowledge = True
|
205 |
+
logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.")
|
206 |
+
elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
|
207 |
+
use_prior_knowledge = True
|
208 |
+
logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.")
|
209 |
+
else:
|
210 |
+
use_prior_knowledge = False
|
211 |
+
|
212 |
+
if use_prior_knowledge:
|
213 |
+
prompt = f"""
|
214 |
+
You are a knowledgeable assistant with up-to-date information as of 2023.
|
215 |
+
URL: {bookmark.get('url')}
|
216 |
+
Provide:
|
217 |
+
1. A concise summary (max two sentences) about this website.
|
218 |
+
2. Assign the most appropriate category from the list below.
|
219 |
+
Categories:
|
220 |
+
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
|
221 |
+
Format:
|
222 |
+
Summary: [Your summary]
|
223 |
+
Category: [One category]
|
224 |
+
"""
|
225 |
+
else:
|
226 |
+
prompt = f"""
|
227 |
+
You are an assistant that creates concise webpage summaries and assigns categories.
|
228 |
+
Content:
|
229 |
+
{content_text}
|
230 |
+
Provide:
|
231 |
+
1. A concise summary (max two sentences) focusing on the main topic.
|
232 |
+
2. Assign the most appropriate category from the list below.
|
233 |
+
Categories:
|
234 |
+
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
|
235 |
+
Format:
|
236 |
+
Summary: [Your summary]
|
237 |
+
Category: [One category]
|
238 |
+
"""
|
239 |
+
|
240 |
+
def estimate_tokens(text):
|
241 |
+
return len(text) / 4
|
242 |
+
|
243 |
+
prompt_tokens = estimate_tokens(prompt)
|
244 |
+
max_tokens = 150
|
245 |
+
total_tokens = prompt_tokens + max_tokens
|
246 |
+
|
247 |
+
tokens_per_minute = 40000
|
248 |
+
tokens_per_second = tokens_per_minute / 60
|
249 |
+
required_delay = total_tokens / tokens_per_second
|
250 |
+
sleep_time = max(required_delay, 2)
|
251 |
+
|
252 |
+
response = openai.ChatCompletion.create(
|
253 |
+
model='llama-3.1-70b-versatile',
|
254 |
+
messages=[
|
255 |
+
{"role": "user", "content": prompt}
|
256 |
+
],
|
257 |
+
max_tokens=int(max_tokens),
|
258 |
+
temperature=0.5,
|
259 |
+
)
|
260 |
+
|
261 |
+
content = response['choices'][0]['message']['content'].strip()
|
262 |
+
if not content:
|
263 |
+
raise ValueError("Empty response received from the model.")
|
264 |
+
|
265 |
+
summary_match = re.search(r"Summary:\s*(.*)", content, re.IGNORECASE)
|
266 |
+
category_match = re.search(r"Category:\s*(.*)", content, re.IGNORECASE)
|
267 |
+
|
268 |
+
# Extract summary
|
269 |
+
if summary_match:
|
270 |
+
summary = summary_match.group(1).strip()
|
271 |
+
if summary:
|
272 |
+
bookmark['summary'] = summary
|
273 |
+
else:
|
274 |
+
# For dead links, only set summary if it's a slow link
|
275 |
+
if bookmark.get('slow_link', False):
|
276 |
+
bookmark['summary'] = metadata.get('description') or metadata.get('title') or 'No summary available.'
|
277 |
+
else:
|
278 |
+
# For dead links without summary, do not set 'summary'
|
279 |
+
bookmark['summary'] = ''
|
280 |
+
else:
|
281 |
+
if bookmark.get('slow_link', False):
|
282 |
+
bookmark['summary'] = metadata.get('description') or metadata.get('title') or 'No summary available.'
|
283 |
+
else:
|
284 |
+
bookmark['summary'] = ''
|
285 |
+
|
286 |
+
# Extract category
|
287 |
+
if category_match:
|
288 |
+
category = category_match.group(1).strip().strip('"')
|
289 |
+
bookmark['category'] = category if category in CATEGORIES else 'Uncategorized'
|
290 |
+
else:
|
291 |
+
bookmark['category'] = 'Uncategorized'
|
292 |
+
|
293 |
+
# Simple keyword-based validation
|
294 |
+
summary_lower = bookmark.get('summary', '').lower()
|
295 |
+
url_lower = bookmark['url'].lower()
|
296 |
+
if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
|
297 |
+
bookmark['category'] = 'Social Media'
|
298 |
+
elif 'wikipedia' in url_lower:
|
299 |
+
bookmark['category'] = 'Reference and Knowledge Bases'
|
300 |
+
|
301 |
+
logger.info("Successfully generated summary and assigned category")
|
302 |
+
time.sleep(sleep_time)
|
303 |
+
break
|
304 |
+
|
305 |
+
except openai.error.RateLimitError as e:
|
306 |
+
retry_count += 1
|
307 |
+
wait_time = int(e.headers.get("Retry-After", 5))
|
308 |
+
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying... (Attempt {retry_count}/{max_retries})")
|
309 |
+
time.sleep(wait_time)
|
310 |
+
except Exception as e:
|
311 |
+
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
312 |
+
# For slow links, provide a summary from metadata or title
|
313 |
+
if bookmark.get('slow_link', False):
|
314 |
+
bookmark['summary'] = metadata.get('description') or metadata.get('title') or 'No summary available.'
|
315 |
+
# For dead links, attempt to set summary; if not possible, leave it unset
|
316 |
+
elif bookmark.get('dead_link', False):
|
317 |
+
bookmark['summary'] = metadata.get('description') or metadata.get('title') or ''
|
318 |
+
else:
|
319 |
+
bookmark['summary'] = 'No summary available.'
|
320 |
+
bookmark['category'] = 'Uncategorized'
|
321 |
+
break
|
322 |
+
|
323 |
+
def parse_bookmarks(file_content):
|
324 |
+
"""
|
325 |
+
Parse bookmarks from HTML file.
|
326 |
+
"""
|
327 |
+
logger.info("Parsing bookmarks")
|
328 |
+
try:
|
329 |
+
soup = BeautifulSoup(file_content, 'html.parser')
|
330 |
+
extracted_bookmarks = []
|
331 |
+
for link in soup.find_all('a'):
|
332 |
+
url = link.get('href')
|
333 |
+
title = link.text.strip()
|
334 |
+
if url and title:
|
335 |
+
if url.startswith('http://') or url.startswith('https://'):
|
336 |
+
extracted_bookmarks.append({'url': url, 'title': title})
|
337 |
+
else:
|
338 |
+
logger.info(f"Skipping non-http/https URL: {url}")
|
339 |
+
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
|
340 |
+
return extracted_bookmarks
|
341 |
+
except Exception as e:
|
342 |
+
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
|
343 |
+
raise
|
344 |
+
|
345 |
def fetch_url_info(bookmark):
|
346 |
"""
|
347 |
Fetch information about a URL.
|
348 |
"""
|
349 |
url = bookmark['url']
|
350 |
if url in fetch_cache:
|
351 |
+
with lock:
|
352 |
bookmark.update(fetch_cache[url])
|
353 |
return
|
354 |
|
|
|
367 |
|
368 |
if response.status_code >= 500:
|
369 |
bookmark['dead_link'] = True
|
370 |
+
bookmark['html_content'] = content # Keep content to extract metadata if possible
|
|
|
371 |
logger.warning(f"Dead link detected: {url} with status {response.status_code}")
|
372 |
else:
|
373 |
bookmark['dead_link'] = False
|
374 |
bookmark['html_content'] = content
|
|
|
375 |
logger.info(f"Fetched information for {url}")
|
376 |
|
377 |
except requests.exceptions.Timeout:
|
378 |
bookmark['dead_link'] = False
|
379 |
bookmark['etag'] = 'N/A'
|
380 |
bookmark['status_code'] = 'Timeout'
|
|
|
381 |
bookmark['html_content'] = ''
|
382 |
bookmark['slow_link'] = True
|
383 |
logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.")
|
|
|
385 |
bookmark['dead_link'] = True
|
386 |
bookmark['etag'] = 'N/A'
|
387 |
bookmark['status_code'] = 'Error'
|
|
|
388 |
bookmark['html_content'] = ''
|
389 |
logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
|
390 |
finally:
|
391 |
+
# Extract meta description for dead links if content is available
|
392 |
+
if bookmark.get('dead_link', False) and bookmark.get('html_content'):
|
393 |
+
soup = BeautifulSoup(bookmark['html_content'], 'html.parser')
|
394 |
+
metadata = get_page_metadata(soup)
|
395 |
+
bookmark['description'] = metadata.get('description', '')
|
396 |
+
elif not bookmark.get('dead_link', False):
|
397 |
+
# For active and slow links, attempt to extract description
|
398 |
+
soup = BeautifulSoup(bookmark['html_content'], 'html.parser')
|
399 |
+
metadata = get_page_metadata(soup)
|
400 |
+
bookmark['description'] = metadata.get('description', '')
|
401 |
+
else:
|
402 |
+
bookmark['description'] = ''
|
403 |
+
|
404 |
+
with lock:
|
405 |
fetch_cache[url] = {
|
406 |
'etag': bookmark.get('etag'),
|
407 |
'status_code': bookmark.get('status_code'),
|
|
|
411 |
'slow_link': bookmark.get('slow_link', False),
|
412 |
}
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
def vectorize_and_index(bookmarks_list):
|
415 |
"""
|
416 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
|
|
418 |
global faiss_index
|
419 |
logger.info("Vectorizing summaries and building FAISS index")
|
420 |
try:
|
421 |
+
# Safely access 'summary' using .get() to avoid KeyError
|
422 |
+
summaries = [bookmark.get('summary', '') for bookmark in bookmarks_list]
|
423 |
embeddings = embedding_model.encode(summaries)
|
424 |
dimension = embeddings.shape[1]
|
425 |
index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
|
|
|
444 |
status = "❌ Dead Link"
|
445 |
card_style = "border: 2px solid red;"
|
446 |
text_style = "color: white;"
|
447 |
+
# For dead links, use 'summary' if available
|
448 |
+
summary = bookmark.get('summary', '')
|
449 |
+
if not summary:
|
450 |
+
# Optionally, you can skip setting summary or provide a default message
|
451 |
+
summary = 'No summary available.'
|
452 |
elif bookmark.get('slow_link'):
|
453 |
status = "⏳ Slow Response"
|
454 |
card_style = "border: 2px solid orange;"
|
455 |
text_style = "color: white;"
|
456 |
+
# For slow links, always provide a summary
|
457 |
+
summary = bookmark.get('summary', 'No summary available.')
|
458 |
else:
|
459 |
status = "✅ Active"
|
460 |
card_style = "border: 2px solid green;"
|
461 |
text_style = "color: white;"
|
462 |
+
summary = bookmark.get('summary', 'No summary available.')
|
463 |
|
464 |
title = bookmark['title']
|
465 |
url = bookmark['url']
|
466 |
etag = bookmark.get('etag', 'N/A')
|
|
|
467 |
category = bookmark.get('category', 'Uncategorized')
|
468 |
|
469 |
# Escape HTML content to prevent XSS attacks
|
|
|
490 |
|
491 |
def process_uploaded_file(file, state_bookmarks):
|
492 |
"""
|
493 |
+
Process the uploaded bookmarks file.
|
494 |
"""
|
495 |
global bookmarks, faiss_index
|
496 |
logger.info("Processing uploaded file")
|
|
|
501 |
|
502 |
try:
|
503 |
file_content = file.decode('utf-8')
|
504 |
+
except UnicodeDecodeError as e:
|
505 |
+
logger.error(f"Error decoding the file: {e}", exc_info=True)
|
506 |
+
return "Error decoding the file. Please ensure it's a valid HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
507 |
+
|
508 |
+
try:
|
509 |
bookmarks = parse_bookmarks(file_content)
|
510 |
+
except Exception as e:
|
511 |
+
logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
|
512 |
+
return "Error parsing the bookmarks HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
513 |
|
514 |
+
if not bookmarks:
|
515 |
+
logger.warning("No bookmarks found in the uploaded file")
|
516 |
+
return "No bookmarks found in the uploaded file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
517 |
|
518 |
+
# Assign unique IDs to bookmarks
|
519 |
+
for idx, bookmark in enumerate(bookmarks):
|
520 |
+
bookmark['id'] = idx
|
521 |
|
522 |
+
# Fetch bookmark info concurrently
|
523 |
+
logger.info("Fetching URL info concurrently")
|
524 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
525 |
+
executor.map(fetch_url_info, bookmarks)
|
526 |
|
527 |
+
# Process bookmarks concurrently with LLM calls
|
528 |
+
logger.info("Processing bookmarks with LLM concurrently")
|
529 |
+
with ThreadPoolExecutor(max_workers=1) as executor:
|
530 |
+
executor.map(generate_summary_and_assign_category, bookmarks)
|
|
|
|
|
531 |
|
532 |
+
try:
|
533 |
faiss_index = vectorize_and_index(bookmarks)
|
534 |
+
except Exception as e:
|
535 |
+
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
536 |
+
return "Error building search index.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
|
537 |
|
538 |
+
message = f"✅ Successfully processed {len(bookmarks)} bookmarks."
|
539 |
+
logger.info(message)
|
|
|
|
|
|
|
540 |
|
541 |
+
# Generate displays and updates
|
542 |
+
bookmark_html = display_bookmarks()
|
543 |
+
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
544 |
+
for i, bookmark in enumerate(bookmarks)]
|
545 |
|
546 |
+
# Update state
|
547 |
+
state_bookmarks = bookmarks.copy()
|
|
|
548 |
|
549 |
+
return message, bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
|
551 |
def delete_selected_bookmarks(selected_indices, state_bookmarks):
|
552 |
"""
|
|
|
610 |
state_bookmarks = bookmarks.copy()
|
611 |
|
612 |
return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
|
613 |
+
|
614 |
def export_bookmarks():
|
615 |
"""
|
616 |
Export bookmarks to an HTML file.
|
|
|
654 |
try:
|
655 |
chat_history.append({"role": "user", "content": user_query})
|
656 |
|
657 |
+
with api_lock:
|
658 |
+
global last_api_call_time
|
659 |
+
current_time = time.time()
|
660 |
+
elapsed = current_time - last_api_call_time
|
661 |
+
if elapsed < 2:
|
662 |
+
sleep_duration = 2 - elapsed
|
663 |
+
logger.info(f"Sleeping for {sleep_duration:.2f} seconds to respect rate limits.")
|
664 |
+
time.sleep(sleep_duration)
|
665 |
+
last_api_call_time = time.time()
|
666 |
+
|
667 |
+
query_vector = embedding_model.encode([user_query]).astype('float32')
|
668 |
+
k = 5
|
669 |
+
distances, ids = faiss_index.search(query_vector, k)
|
670 |
+
ids = ids.flatten()
|
671 |
+
|
672 |
+
id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
|
673 |
+
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark and id_to_bookmark.get(id).get('summary')]
|
674 |
+
|
675 |
+
if not matching_bookmarks:
|
676 |
+
answer = "No relevant bookmarks found for your query."
|
677 |
+
chat_history.append({"role": "assistant", "content": answer})
|
678 |
+
return chat_history
|
679 |
+
|
680 |
+
bookmarks_info = "\n".join([
|
681 |
+
f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
|
682 |
+
for bookmark in matching_bookmarks
|
683 |
+
])
|
684 |
+
|
685 |
+
prompt = f"""
|
686 |
+
A user asked: "{user_query}"
|
687 |
+
Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
|
688 |
+
Bookmarks:
|
689 |
{bookmarks_info}
|
690 |
+
Provide a concise and helpful response.
|
691 |
+
"""
|
692 |
+
|
693 |
+
def estimate_tokens(text):
|
694 |
+
return len(text) / 4
|
695 |
+
|
696 |
+
prompt_tokens = estimate_tokens(prompt)
|
697 |
+
max_tokens = 300
|
698 |
+
total_tokens = prompt_tokens + max_tokens
|
699 |
+
|
700 |
+
tokens_per_minute = 40000
|
701 |
+
tokens_per_second = tokens_per_minute / 60
|
702 |
+
required_delay = total_tokens / tokens_per_second
|
703 |
+
sleep_time = max(required_delay, 2)
|
704 |
+
|
705 |
+
response = openai.ChatCompletion.create(
|
706 |
+
model='llama-3.1-70b-versatile',
|
707 |
+
messages=[
|
708 |
+
{"role": "user", "content": prompt}
|
709 |
+
],
|
710 |
+
max_tokens=int(max_tokens),
|
711 |
+
temperature=0.7,
|
712 |
+
)
|
713 |
+
|
714 |
+
answer = response['choices'][0]['message']['content'].strip()
|
715 |
+
logger.info("Chatbot response generated")
|
716 |
+
time.sleep(sleep_time)
|
717 |
+
|
718 |
+
chat_history.append({"role": "assistant", "content": answer})
|
719 |
+
return chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
720 |
|
721 |
+
except openai.error.RateLimitError as e:
|
722 |
+
wait_time = int(e.headers.get("Retry-After", 5))
|
723 |
+
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
|
724 |
+
time.sleep(wait_time)
|
725 |
+
return chatbot_response(user_query, chat_history)
|
726 |
except Exception as e:
|
727 |
error_message = f"⚠️ Error processing your query: {str(e)}"
|
728 |
logger.error(error_message, exc_info=True)
|
|
|
844 |
""")
|
845 |
|
846 |
manage_output = gr.Textbox(label="🔄 Status", interactive=False)
|
847 |
+
|
848 |
+
# CheckboxGroup for selecting bookmarks
|
849 |
bookmark_selector = gr.CheckboxGroup(
|
850 |
label="✅ Select Bookmarks",
|
851 |
choices=[]
|
852 |
)
|
853 |
+
|
854 |
new_category = gr.Dropdown(
|
855 |
label="🆕 New Category",
|
856 |
choices=CATEGORIES,
|
|
|
909 |
print(f"Error building the app: {e}")
|
910 |
|
911 |
if __name__ == "__main__":
|
912 |
+
build_app()
|