siddhartharya's picture
Update app.py
dd78c27 verified
raw
history blame
31.8 kB
# app.py
import gradio as gr
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import requests
import time
import re
import base64
import logging
import os
import sys
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import threading
# Import OpenAI library
import openai
# Suppress only the single warning from urllib3 needed.
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# Set up logging to output to the console
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Create a console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
# Create a formatter and set it for the handler
formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
console_handler.setFormatter(formatter)
# Add the handler to the logger
logger.addHandler(console_handler)
# Initialize variables and models
logger.info("Initializing variables and models")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}
# Groq API Rate Limits
GROQ_RPM = 30 # requests per minute
GROQ_TPM = 40000 # tokens per minute
SECONDS_PER_MINUTE = 60
MIN_TIME_BETWEEN_CALLS = SECONDS_PER_MINUTE / GROQ_RPM # 2 seconds between calls
MAX_CONCURRENT_CALLS = 3 # Keep concurrent calls limited to prevent rate limits
TOKEN_BUFFER = 0.9 # Use 90% of token limit to be safe
# Rate limiting tools
api_lock = threading.Lock()
request_times = [] # Track request timestamps
token_usage = [] # Track token usage
LLM_SEMAPHORE = threading.Semaphore(MAX_CONCURRENT_CALLS)
# Define the categories
CATEGORIES = [
"Social Media",
"News and Media",
"Education and Learning",
"Entertainment",
"Shopping and E-commerce",
"Finance and Banking",
"Technology",
"Health and Fitness",
"Travel and Tourism",
"Food and Recipes",
"Sports",
"Arts and Culture",
"Government and Politics",
"Business and Economy",
"Science and Research",
"Personal Blogs and Journals",
"Job Search and Careers",
"Music and Audio",
"Videos and Movies",
"Reference and Knowledge Bases",
"Dead Link",
"Uncategorized",
]
# Set up Groq Cloud API key and base URL
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY environment variable not set.")
openai.api_key = GROQ_API_KEY
openai.api_base = "https://api.groq.com/openai/v1"
def manage_rate_limits():
"""
Manage both request and token rate limits.
Returns the time to wait (if any) before making next request.
"""
current_time = time.time()
minute_ago = current_time - SECONDS_PER_MINUTE
# Clean up old entries
global request_times, token_usage
request_times = [t for t in request_times if t > minute_ago]
token_usage = [t for t, _ in token_usage if t > minute_ago]
# Check request rate
if len(request_times) >= GROQ_RPM:
oldest_request = request_times[0]
return max(0, SECONDS_PER_MINUTE - (current_time - oldest_request))
# Check token rate
total_tokens = sum(tokens for _, tokens in token_usage)
if total_tokens >= GROQ_TPM * TOKEN_BUFFER:
return 1.0 # Wait a second if near token limit
return 0
def estimate_tokens(text):
"""Estimate tokens in text using GPT-3 tokenizer approximation"""
return len(text.split()) * 1.3 # Rough estimate: 1.3 tokens per word
def extract_main_content(soup):
"""
Extract the main content from a webpage while filtering out boilerplate content.
"""
if not soup:
return ""
# Remove unwanted elements
for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']):
element.decompose()
# Extract text from <p> tags
p_tags = soup.find_all('p')
if p_tags:
content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags])
else:
# Fallback to body content
content = soup.get_text(separator=' ', strip=True)
# Clean up the text
content = re.sub(r'\s+', ' ', content)
# Truncate content to a reasonable length (e.g., 1500 words)
words = content.split()
if len(words) > 1500:
content = ' '.join(words[:1500])
return content
def get_page_metadata(soup):
"""
Extract metadata from the webpage including title, description, and keywords.
"""
metadata = {
'title': '',
'description': '',
'keywords': ''
}
if not soup:
return metadata
# Get title
title_tag = soup.find('title')
if title_tag and title_tag.string:
metadata['title'] = title_tag.string.strip()
# Get meta description
meta_desc = (
soup.find('meta', attrs={'name': 'description'}) or
soup.find('meta', attrs={'property': 'og:description'}) or
soup.find('meta', attrs={'name': 'twitter:description'})
)
if meta_desc:
metadata['description'] = meta_desc.get('content', '').strip()
# Get meta keywords
meta_keywords = soup.find('meta', attrs={'name': 'keywords'})
if meta_keywords:
metadata['keywords'] = meta_keywords.get('content', '').strip()
# Get OG title if main title is empty
if not metadata['title']:
og_title = soup.find('meta', attrs={'property': 'og:title'})
if og_title:
metadata['title'] = og_title.get('content', '').strip()
return metadata
def fetch_url_info(bookmark):
"""
Fetch information about a URL.
"""
url = bookmark['url']
if url in fetch_cache:
with api_lock:
bookmark.update(fetch_cache[url])
return
try:
logger.info(f"Fetching URL info for: {url}")
headers = {
'User-Agent': 'Mozilla/5.0',
'Accept-Language': 'en-US,en;q=0.9',
}
response = requests.get(url, headers=headers, timeout=5, verify=False, allow_redirects=True)
bookmark['etag'] = response.headers.get('ETag', 'N/A')
bookmark['status_code'] = response.status_code
content = response.text
logger.info(f"Fetched content length for {url}: {len(content)} characters")
if response.status_code >= 500:
bookmark['dead_link'] = True
bookmark['description'] = ''
bookmark['html_content'] = ''
logger.warning(f"Dead link detected: {url} with status {response.status_code}")
else:
bookmark['dead_link'] = False
bookmark['html_content'] = content
bookmark['description'] = ''
logger.info(f"Fetched information for {url}")
except requests.exceptions.Timeout:
bookmark['dead_link'] = False
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'Timeout'
bookmark['description'] = ''
bookmark['html_content'] = ''
bookmark['slow_link'] = True
logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.")
except Exception as e:
bookmark['dead_link'] = True
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'Error'
bookmark['description'] = ''
bookmark['html_content'] = ''
logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
finally:
with api_lock:
fetch_cache[url] = {
'etag': bookmark.get('etag'),
'status_code': bookmark.get('status_code'),
'dead_link': bookmark.get('dead_link'),
'description': bookmark.get('description'),
'html_content': bookmark.get('html_content', ''),
'slow_link': bookmark.get('slow_link', False),
}
def process_bookmarks_batch(bookmarks_batch):
"""Process a batch of bookmarks with controlled rate limiting"""
for bookmark in bookmarks_batch:
with LLM_SEMAPHORE:
while True:
with api_lock:
wait_time = manage_rate_limits()
if wait_time <= 0:
break
logger.info(f"Rate limiting: Waiting for {wait_time:.2f} seconds...")
time.sleep(wait_time)
try:
html_content = bookmark.get('html_content', '')
soup = BeautifulSoup(html_content, 'html.parser')
metadata = get_page_metadata(soup)
main_content = extract_main_content(soup)
# Prepare shortened prompt to reduce tokens
content = f"Title: {metadata['title']}\nURL: {bookmark['url']}"
if len(main_content) > 1000: # Limit content length
main_content = main_content[:1000] + "..."
prompt = f"""Analyze this webpage:
{content}
Content: {main_content}
Provide in format:
Summary: [2 sentences max]
Category: [{', '.join(CATEGORIES)}]"""
# Estimate tokens
input_tokens = estimate_tokens(prompt)
max_tokens = 150
total_tokens = input_tokens + max_tokens
# Make API call
response = openai.ChatCompletion.create(
model='llama-3.1-70b-versatile',
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=0.5,
)
# Track rate limits
with api_lock:
current_time = time.time()
request_times.append(current_time)
token_usage.append((current_time, total_tokens))
content = response['choices'][0]['message']['content'].strip()
# Process response
summary_match = re.search(r"Summary:\s*(.*?)(?:\n|$)", content)
category_match = re.search(r"Category:\s*(.*?)(?:\n|$)", content)
bookmark['summary'] = summary_match.group(1).strip() if summary_match else 'No summary available.'
if category_match:
category = category_match.group(1).strip().strip('"')
bookmark['category'] = category if category in CATEGORIES else 'Uncategorized'
else:
bookmark['category'] = 'Uncategorized'
# Quick category validation
if 'social media' in bookmark['url'].lower() or 'twitter' in bookmark['url'].lower() or 'x.com' in bookmark['url'].lower():
bookmark['category'] = 'Social Media'
elif 'wikipedia' in bookmark['url'].lower():
bookmark['category'] = 'Reference and Knowledge Bases'
logger.info(f"Successfully processed bookmark: {bookmark['url']}")
break
except openai.error.RateLimitError as e:
wait_time = int(e.headers.get('Retry-After', 5))
logger.warning(f"Rate limit hit, waiting {wait_time} seconds...")
time.sleep(wait_time)
except Exception as e:
logger.error(f"Error processing bookmark: {e}")
bookmark['summary'] = 'Processing failed.'
bookmark['category'] = 'Uncategorized'
break
def vectorize_and_index(bookmarks_list):
"""
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
"""
global faiss_index
logger.info("Vectorizing summaries and building FAISS index")
try:
summaries = [bookmark['summary'] for bookmark in bookmarks_list]
embeddings = embedding_model.encode(summaries)
dimension = embeddings.shape[1]
index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
index.add_with_ids(np.array(embeddings).astype('float32'), ids)
faiss_index = index
logger.info("FAISS index built successfully with IDs")
return index
except Exception as e:
logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True)
raise
def display_bookmarks():
"""
Generate HTML display for bookmarks.
"""
logger.info("Generating HTML display for bookmarks")
cards = ''
for i, bookmark in enumerate(bookmarks):
index = i + 1
if bookmark.get('dead_link'):
status = "❌ Dead Link"
card_style = "border: 2px solid red;"
text_style = "color: white;"
elif bookmark.get('slow_link'):
status = "⏳ Slow Response"
card_style = "border: 2px solid orange;"
text_style = "color: white;"
else:
status = "βœ… Active"
card_style = "border: 2px solid green;"
text_style = "color: white;"
title = bookmark['title']
url = bookmark['url']
etag = bookmark.get('etag', 'N/A')
summary = bookmark.get('summary', '')
category = bookmark.get('category', 'Uncategorized')
# Escape HTML content to prevent XSS attacks
from html import escape
title = escape(title)
url = escape(url)
summary = escape(summary)
category = escape(category)
card_html = f'''
<div class="card" style="{card_style} padding: 10px; margin: 10px; border-radius: 5px; background-color: #1e1e1e;">
<div class="card-content">
<h3 style="{text_style}">{index}. {title} {status}</h3>
<p style="{text_style}"><strong>Category:</strong> {category}</p>
<p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
<p style="{text_style}"><strong>ETag:</strong> {etag}</p>
<p style="{text_style}"><strong>Summary:</strong> {summary}</p>
</div>
</div>
'''
cards += card_html
logger.info("HTML display generated")
return cards
def process_uploaded_file(file, state_bookmarks):
"""
Process uploaded file with optimized batch processing
"""
global bookmarks, faiss_index
logger.info("Processing uploaded file")
if file is None:
logger.warning("No file uploaded")
return "Please upload a bookmarks HTML file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
try:
file_content = file.decode('utf-8')
bookmarks = parse_bookmarks(file_content)
if not bookmarks:
return "No bookmarks found in the file.", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
# Assign IDs
for idx, bookmark in enumerate(bookmarks):
bookmark['id'] = idx
# First fetch all URLs concurrently
with ThreadPoolExecutor(max_workers=10) as executor:
executor.map(fetch_url_info, bookmarks)
# Process bookmarks in parallel with controlled concurrency
batch_size = min(MAX_CONCURRENT_CALLS, len(bookmarks))
batches = [bookmarks[i:i + batch_size] for i in range(0, len(bookmarks), batch_size)]
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT_CALLS) as executor:
executor.map(process_bookmarks_batch, batches)
# Build FAISS index
faiss_index = vectorize_and_index(bookmarks)
# Update display and state
bookmark_html = display_bookmarks()
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
state_bookmarks = bookmarks.copy()
return "βœ… Processing complete!", bookmark_html, state_bookmarks, bookmark_html, gr.update(choices=choices)
except Exception as e:
logger.error(f"Error processing file: {e}")
return f"Error processing file: {str(e)}", '', state_bookmarks, display_bookmarks(), gr.update(choices=[])
def parse_bookmarks(file_content):
"""
Parse bookmarks from HTML file.
"""
logger.info("Parsing bookmarks")
try:
soup = BeautifulSoup(file_content, 'html.parser')
extracted_bookmarks = []
for link in soup.find_all('a'):
url = link.get('href')
title = link.text.strip()
if url and title:
if url.startswith('http://') or url.startswith('https://'):
extracted_bookmarks.append({'url': url, 'title': title})
else:
logger.info(f"Skipping non-http/https URL: {url}")
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
return extracted_bookmarks
except Exception as e:
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
raise
def delete_selected_bookmarks(selected_indices, state_bookmarks):
"""
Delete selected bookmarks and remove their vectors from the FAISS index.
"""
global bookmarks, faiss_index
if not selected_indices:
return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
ids_to_delete = []
indices_to_delete = []
for s in selected_indices:
idx = int(s.split('.')[0]) - 1
if 0 <= idx < len(bookmarks):
bookmark_id = bookmarks[idx]['id']
ids_to_delete.append(bookmark_id)
indices_to_delete.append(idx)
logger.info(f"Deleting bookmark at index {idx + 1}")
# Remove vectors from FAISS index
if faiss_index is not None and ids_to_delete:
faiss_index.remove_ids(np.array(ids_to_delete, dtype=np.int64))
# Remove bookmarks from the list (reverse order to avoid index shifting)
for idx in sorted(indices_to_delete, reverse=True):
bookmarks.pop(idx)
message = "πŸ—‘οΈ Selected bookmarks deleted successfully."
logger.info(message)
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
# Update state
state_bookmarks = bookmarks.copy()
return message, gr.update(choices=choices), display_bookmarks()
def edit_selected_bookmarks_category(selected_indices, new_category, state_bookmarks):
"""
Edit category of selected bookmarks.
"""
if not selected_indices:
return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks(), state_bookmarks
if not new_category:
return "⚠️ No new category selected.", gr.update(choices=[]), display_bookmarks(), state_bookmarks
indices = [int(s.split('.')[0])-1 for s in selected_indices]
for idx in indices:
if 0 <= idx < len(bookmarks):
bookmarks[idx]['category'] = new_category
logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")
message = "✏️ Category updated for selected bookmarks."
logger.info(message)
# Update choices and display
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
# Update state
state_bookmarks = bookmarks.copy()
return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
def export_bookmarks():
"""
Export bookmarks to an HTML file.
"""
if not bookmarks:
logger.warning("No bookmarks to export")
return None
try:
logger.info("Exporting bookmarks to HTML")
soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
dl = soup.new_tag('DL')
for bookmark in bookmarks:
dt = soup.new_tag('DT')
a = soup.new_tag('A', href=bookmark['url'])
a.string = bookmark['title']
dt.append(a)
dl.append(dt)
soup.append(dl)
html_content = str(soup)
output_file = "exported_bookmarks.html"
with open(output_file, 'w', encoding='utf-8') as f:
f.write(html_content)
logger.info("Bookmarks exported successfully")
return output_file
except Exception as e:
logger.error(f"Error exporting bookmarks: {e}", exc_info=True)
return None
def chatbot_response(user_query, chat_history):
"""
Generate chatbot response using the FAISS index and embeddings.
"""
if not bookmarks or faiss_index is None:
logger.warning("No bookmarks available for chatbot")
chat_history.append({"role": "assistant", "content": "⚠️ No bookmarks available. Please upload and process your bookmarks first."})
return chat_history
logger.info(f"Chatbot received query: {user_query}")
try:
chat_history.append({"role": "user", "content": user_query})
with LLM_SEMAPHORE:
while True:
with api_lock:
wait_time = manage_rate_limits()
if wait_time <= 0:
break
logger.info(f"Rate limiting: Waiting for {wait_time:.2f} seconds...")
time.sleep(wait_time)
try:
# Search for relevant bookmarks
query_vector = embedding_model.encode([user_query]).astype('float32')
k = 5
distances, ids = faiss_index.search(query_vector, k)
ids = ids.flatten()
id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
if not matching_bookmarks:
answer = "No relevant bookmarks found for your query."
chat_history.append({"role": "assistant", "content": answer})
return chat_history
# Prepare concise prompt
bookmarks_info = "\n".join([
f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
for bookmark in matching_bookmarks
])
prompt = f"""User Query: "{user_query}"
Found Bookmarks:
{bookmarks_info}
Provide a helpful, concise response."""
# Estimate tokens and make API call
input_tokens = estimate_tokens(prompt)
max_tokens = 300
total_tokens = input_tokens + max_tokens
response = openai.ChatCompletion.create(
model='llama-3.1-70b-versatile',
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=0.7,
)
# Track rate limits
with api_lock:
current_time = time.time()
request_times.append(current_time)
token_usage.append((current_time, total_tokens))
answer = response['choices'][0]['message']['content'].strip()
logger.info("Chatbot response generated")
chat_history.append({"role": "assistant", "content": answer})
return chat_history
except openai.error.RateLimitError as e:
wait_time = int(e.headers.get('Retry-After', 5))
logger.warning(f"Rate limit hit, waiting {wait_time} seconds...")
time.sleep(wait_time)
continue
except Exception as e:
error_message = f"⚠️ Error processing your query: {str(e)}"
logger.error(error_message, exc_info=True)
chat_history.append({"role": "assistant", "content": error_message})
return chat_history
except Exception as e:
error_message = f"⚠️ Error processing your query: {str(e)}"
logger.error(error_message, exc_info=True)
chat_history.append({"role": "assistant", "content": error_message})
return chat_history
def build_app():
"""
Build and launch the Gradio app.
"""
try:
logger.info("Building Gradio app")
with gr.Blocks(css="app.css") as demo:
# Initialize state
state_bookmarks = gr.State([])
# General Overview
gr.Markdown("""
# πŸ“š SmartMarks - AI Browser Bookmarks Manager
Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly.
---
## πŸš€ **How to Use SmartMarks**
SmartMarks is divided into three main sections:
1. **πŸ“‚ Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
2. **πŸ’¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
3. **πŸ› οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.
Navigate through the tabs to explore each feature in detail.
""")
# Upload and Process Bookmarks Tab
with gr.Tab("Upload and Process Bookmarks"):
gr.Markdown("""
## πŸ“‚ **Upload and Process Bookmarks**
### πŸ“ **Steps to Upload and Process:**
1. **Upload Bookmarks File:**
- Click on the **"πŸ“ Upload Bookmarks HTML File"** button.
- Select your browser's exported bookmarks HTML file from your device.
2. **Process Bookmarks:**
- After uploading, click on the **"βš™οΈ Process Bookmarks"** button.
- SmartMarks will parse your bookmarks, fetch additional information, generate summaries, and categorize each link based on predefined categories.
3. **View Processed Bookmarks:**
- Once processing is complete, your bookmarks will be displayed in an organized and visually appealing format below.
""")
upload = gr.File(label="πŸ“ Upload Bookmarks HTML File", type='binary')
process_button = gr.Button("βš™οΈ Process Bookmarks")
output_text = gr.Textbox(label="βœ… Output", interactive=False)
bookmark_display = gr.HTML(label="πŸ“„ Processed Bookmarks")
# Chat with Bookmarks Tab
with gr.Tab("Chat with Bookmarks"):
gr.Markdown("""
## πŸ’¬ **Chat with Bookmarks**
### πŸ€– **How to Interact:**
1. **Enter Your Query:**
- In the **"✍️ Ask about your bookmarks"** textbox, type your question or keyword related to your bookmarks.
2. **Submit Your Query:**
- Click the **"πŸ“¨ Send"** button to submit your query.
3. **Receive AI-Driven Responses:**
- SmartMarks will analyze your query and provide relevant bookmarks that match your request.
4. **View Chat History:**
- All your queries and the corresponding AI responses are displayed in the chat history.
""")
chatbot = gr.Chatbot(label="πŸ’¬ Chat with SmartMarks", type='messages')
user_input = gr.Textbox(
label="✍️ Ask about your bookmarks",
placeholder="e.g., Do I have any bookmarks about AI?"
)
chat_button = gr.Button("πŸ“¨ Send")
chat_button.click(
chatbot_response,
inputs=[user_input, chatbot],
outputs=chatbot
)
# Manage Bookmarks Tab
with gr.Tab("Manage Bookmarks"):
gr.Markdown("""
## πŸ› οΈ **Manage Bookmarks**
### πŸ—‚οΈ **Features:**
1. **View Bookmarks:**
- All your processed bookmarks are displayed here with their respective categories and summaries.
2. **Select Bookmarks:**
- Use the checkboxes next to each bookmark to select one, multiple, or all bookmarks you wish to manage.
3. **Delete Selected Bookmarks:**
- After selecting the desired bookmarks, click the **"πŸ—‘οΈ Delete Selected"** button to remove them from your list.
4. **Edit Categories:**
- Select the bookmarks you want to re-categorize.
- Choose a new category from the dropdown menu labeled **"πŸ†• New Category"**.
- Click the **"✏️ Edit Category"** button to update their categories.
5. **Export Bookmarks:**
- Click the **"πŸ’Ύ Export"** button to download your updated bookmarks as an HTML file.
6. **Refresh Bookmarks:**
- Click the **"πŸ”„ Refresh Bookmarks"** button to ensure the latest state is reflected in the display.
""")
manage_output = gr.Textbox(label="πŸ”„ Status", interactive=False)
# Move bookmark_selector here
bookmark_selector = gr.CheckboxGroup(
label="βœ… Select Bookmarks",
choices=[]
)
new_category = gr.Dropdown(
label="πŸ†• New Category",
choices=CATEGORIES,
value="Uncategorized"
)
bookmark_display_manage = gr.HTML(label="πŸ“„ Bookmarks")
with gr.Row():
delete_button = gr.Button("πŸ—‘οΈ Delete Selected")
edit_category_button = gr.Button("✏️ Edit Category")
export_button = gr.Button("πŸ’Ύ Export")
refresh_button = gr.Button("πŸ”„ Refresh Bookmarks")
download_link = gr.File(label="πŸ“₯ Download Exported Bookmarks")
# Connect all the button actions
process_button.click(
process_uploaded_file,
inputs=[upload, state_bookmarks],
outputs=[output_text, bookmark_display, state_bookmarks, bookmark_display, bookmark_selector]
)
delete_button.click(
delete_selected_bookmarks,
inputs=[bookmark_selector, state_bookmarks],
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
)
edit_category_button.click(
edit_selected_bookmarks_category,
inputs=[bookmark_selector, new_category, state_bookmarks],
outputs=[manage_output, bookmark_selector, bookmark_display_manage, state_bookmarks]
)
export_button.click(
export_bookmarks,
outputs=download_link
)
refresh_button.click(
lambda state_bookmarks: (
[
f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(state_bookmarks)
],
display_bookmarks()
),
inputs=[state_bookmarks],
outputs=[bookmark_selector, bookmark_display_manage]
)
logger.info("Launching Gradio app")
demo.launch(debug=True)
except Exception as e:
logger.error(f"Error building the app: {e}", exc_info=True)
print(f"Error building the app: {e}")
if __name__ == "__main__":
build_app()