File size: 5,398 Bytes
05de921
 
 
 
dcf746e
 
 
 
05de921
31c955d
05de921
cdd7269
05de921
c425950
 
 
05de921
 
880f9ee
cdd7269
05de921
 
 
cdd7269
05de921
 
 
cdd7269
05de921
 
 
 
314bf31
05de921
db87ed3
18ec658
e985ab1
0e041b2
05de921
59084a2
05de921
 
 
 
 
 
59084a2
 
05de921
 
 
 
 
 
 
97165e2
05de921
00cf45f
 
05de921
 
00cf45f
 
05de921
00cf45f
05de921
c425950
05de921
 
 
 
97165e2
05de921
 
 
 
00cf45f
05de921
00cf45f
05de921
 
 
00cf45f
 
 
05de921
 
 
 
 
 
 
 
 
97165e2
05de921
 
 
 
 
 
 
 
00cf45f
05de921
 
 
35f5bd8
05de921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00cf45f
05de921
 
 
00cf45f
05de921
 
8ba26a5
05de921
00cf45f
05de921
 
 
 
 
 
35f5bd8
05de921
 
 
6e6eade
05de921
31c955d
05de921
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import time
import threading
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
import logging

# Suppress warnings from urllib3
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Environment variable keys for API access
GROQ_API_KEY_BASIC = os.getenv('GROQ_API_KEY_BASIC')
GROQ_API_KEY_ADVANCED = os.getenv('GROQ_API_KEY_ADVANCED')

# LLM Models
MODEL_BASIC = 'llama-3.1-8b-instant'
MODEL_ADVANCED = 'llama-3.1-70b-versatile'

# Verify API keys
if not GROQ_API_KEY_BASIC or not GROQ_API_KEY_ADVANCED:
    logger.error("Both GROQ_API_KEY_BASIC and GROQ_API_KEY_ADVANCED must be set.")
    exit()

# Embedding model and FAISS index initialization
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []

# Define categories
CATEGORIES = [
    "Social Media", "News and Media", "Education and Learning", "Entertainment",
    "Shopping and E-commerce", "Finance and Banking", "Technology", "Health and Fitness",
    "Travel and Tourism", "Food and Recipes", "Sports", "Arts and Culture",
    "Government and Politics", "Business and Economy", "Science and Research",
    "Personal Blogs and Journals", "Job Search and Careers", "Music and Audio",
    "Videos and Movies", "Reference and Knowledge Bases", "Dead Link", "Uncategorized"
]

# Task routing logic
def select_model_for_task(content_length):
    """Choose LLM model based on task complexity."""
    if content_length < 500:  # Simple tasks
        return GROQ_API_KEY_BASIC, MODEL_BASIC
    else:  # Complex tasks
        return GROQ_API_KEY_ADVANCED, MODEL_ADVANCED

# Fetch URL info function
def fetch_url_info(bookmark):
    try:
        response = requests.get(bookmark['url'], timeout=10, verify=False)
        bookmark['html_content'] = response.text
        bookmark['status_code'] = response.status_code
    except Exception as e:
        logger.error(f"Failed to fetch URL info for {bookmark['url']}: {e}")
        bookmark['html_content'] = ''
        bookmark['status_code'] = 'Error'

# Generate summary and assign category
def generate_summary_and_assign_category(bookmark):
    content_length = len(bookmark.get('html_content', ''))
    api_key, model_name = select_model_for_task(content_length)

    # Prepare the prompt
    prompt = f"""
You are an assistant. Summarize the following webpage content:
{bookmark.get('html_content', '')}

Assign one category from this list: {', '.join(CATEGORIES)}.

Respond in the format:
Summary: [Your summary]
Category: [One category]
    """

    try:
        response = requests.post(
            f"https://api.openai.com/v1/chat/completions",
            headers={"Authorization": f"Bearer {api_key}"},
            json={
                "model": model_name,
                "messages": [{"role": "user", "content": prompt}],
                "max_tokens": 150,
                "temperature": 0.7,
            },
        )
        result = response.json()
        content = result['choices'][0]['message']['content']

        # Extract summary and category
        summary_start = content.find("Summary:")
        category_start = content.find("Category:")
        bookmark['summary'] = content[summary_start + 9:category_start].strip()
        bookmark['category'] = content[category_start + 9:].strip()
    except Exception as e:
        logger.error(f"Error processing LLM response for {bookmark['url']}: {e}")
        bookmark['summary'] = 'No summary available.'
        bookmark['category'] = 'Uncategorized'

# Vectorize summaries and build FAISS index
def vectorize_and_index(bookmarks):
    global faiss_index
    summaries = [b['summary'] for b in bookmarks]
    embeddings = embedding_model.encode(summaries)
    dimension = embeddings.shape[1]
    index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
    ids = np.arange(len(bookmarks))
    index.add_with_ids(embeddings, ids)
    faiss_index = index

# Gradio interface setup
def process_bookmarks(file):
    global bookmarks
    file_content = file.read().decode('utf-8')
    soup = BeautifulSoup(file_content, 'html.parser')

    # Parse bookmarks
    bookmarks = [
        {'url': link.get('href'), 'title': link.text, 'html_content': ''}
        for link in soup.find_all('a') if link.get('href')
    ]

    # Fetch URLs concurrently
    with ThreadPoolExecutor() as executor:
        executor.map(fetch_url_info, bookmarks)

    # Process bookmarks with LLM
    with ThreadPoolExecutor() as executor:
        executor.map(generate_summary_and_assign_category, bookmarks)

    # Build FAISS index
    vectorize_and_index(bookmarks)

    return bookmarks

# Build Gradio app
with gr.Blocks() as demo:
    gr.Markdown("# Smart Bookmark Manager")
    file_input = gr.File(label="Upload Bookmark File", type="binary")
    submit_button = gr.Button("Process")
    output = gr.Textbox(label="Output")

    def handle_submit(file):
        processed = process_bookmarks(file)
        return "\n".join([f"{b['title']} - {b['category']}" for b in processed])

    submit_button.click(handle_submit, inputs=file_input, outputs=output)

demo.launch()