Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from pydub import AudioSegment
|
|
| 5 |
import tempfile
|
| 6 |
import os
|
| 7 |
import io
|
| 8 |
-
from
|
| 9 |
import numpy as np
|
| 10 |
import wave
|
| 11 |
import matplotlib.pyplot as plt
|
|
@@ -55,11 +55,17 @@ def transcribe_audio(audio_file):
|
|
| 55 |
except sr.RequestError:
|
| 56 |
return "Could not request results from Google Speech Recognition service."
|
| 57 |
|
| 58 |
-
# Function
|
| 59 |
-
def
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
# Function to visualize audio waveform
|
| 65 |
def plot_waveform(audio_file):
|
|
@@ -73,8 +79,8 @@ def plot_waveform(audio_file):
|
|
| 73 |
st.pyplot(plt)
|
| 74 |
|
| 75 |
# Streamlit app layout
|
| 76 |
-
st.title("Video and Audio to Text Transcription with
|
| 77 |
-
st.write("Upload a video or audio file to convert it to transcription,
|
| 78 |
|
| 79 |
# Create tabs to separate video and audio uploads
|
| 80 |
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"])
|
|
@@ -105,9 +111,9 @@ if tab == "Video":
|
|
| 105 |
# Show the transcription
|
| 106 |
st.text_area("Transcription", transcription, height=300)
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
st.write(f"
|
| 111 |
|
| 112 |
# Plot the audio waveform
|
| 113 |
st.subheader("Audio Waveform Visualization")
|
|
@@ -173,9 +179,9 @@ elif tab == "Audio":
|
|
| 173 |
# Show the transcription
|
| 174 |
st.text_area("Transcription", transcription, height=300)
|
| 175 |
|
| 176 |
-
#
|
| 177 |
-
|
| 178 |
-
st.write(f"
|
| 179 |
|
| 180 |
# Plot the audio waveform
|
| 181 |
st.subheader("Audio Waveform Visualization")
|
|
@@ -212,4 +218,4 @@ elif tab == "Audio":
|
|
| 212 |
data=st.session_state.wav_audio_file_audio,
|
| 213 |
file_name="converted_audio_audio.wav",
|
| 214 |
mime="audio/wav"
|
| 215 |
-
)
|
|
|
|
| 5 |
import tempfile
|
| 6 |
import os
|
| 7 |
import io
|
| 8 |
+
from transformers import pipeline
|
| 9 |
import numpy as np
|
| 10 |
import wave
|
| 11 |
import matplotlib.pyplot as plt
|
|
|
|
| 55 |
except sr.RequestError:
|
| 56 |
return "Could not request results from Google Speech Recognition service."
|
| 57 |
|
| 58 |
+
# Function to perform emotion detection using Hugging Face transformers
|
| 59 |
+
def detect_emotion(text):
|
| 60 |
+
# Load emotion detection pipeline
|
| 61 |
+
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
| 62 |
+
|
| 63 |
+
# Get the emotion predictions
|
| 64 |
+
result = emotion_pipeline(text)
|
| 65 |
+
|
| 66 |
+
# Extract the emotion with the highest score
|
| 67 |
+
emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
|
| 68 |
+
return emotions
|
| 69 |
|
| 70 |
# Function to visualize audio waveform
|
| 71 |
def plot_waveform(audio_file):
|
|
|
|
| 79 |
st.pyplot(plt)
|
| 80 |
|
| 81 |
# Streamlit app layout
|
| 82 |
+
st.title("Video and Audio to Text Transcription with Emotion Detection and Visualization")
|
| 83 |
+
st.write("Upload a video or audio file to convert it to transcription, detect emotions, and visualize the audio waveform.")
|
| 84 |
|
| 85 |
# Create tabs to separate video and audio uploads
|
| 86 |
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"])
|
|
|
|
| 111 |
# Show the transcription
|
| 112 |
st.text_area("Transcription", transcription, height=300)
|
| 113 |
|
| 114 |
+
# Emotion detection
|
| 115 |
+
emotions = detect_emotion(transcription)
|
| 116 |
+
st.write(f"Detected Emotions: {emotions}")
|
| 117 |
|
| 118 |
# Plot the audio waveform
|
| 119 |
st.subheader("Audio Waveform Visualization")
|
|
|
|
| 179 |
# Show the transcription
|
| 180 |
st.text_area("Transcription", transcription, height=300)
|
| 181 |
|
| 182 |
+
# Emotion detection
|
| 183 |
+
emotions = detect_emotion(transcription)
|
| 184 |
+
st.write(f"Detected Emotions: {emotions}")
|
| 185 |
|
| 186 |
# Plot the audio waveform
|
| 187 |
st.subheader("Audio Waveform Visualization")
|
|
|
|
| 218 |
data=st.session_state.wav_audio_file_audio,
|
| 219 |
file_name="converted_audio_audio.wav",
|
| 220 |
mime="audio/wav"
|
| 221 |
+
)
|