Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,10 @@ from pydub import AudioSegment
|
|
5 |
import tempfile
|
6 |
import os
|
7 |
import io
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Function to convert video to audio
|
10 |
def video_to_audio(video_file):
|
@@ -51,9 +55,26 @@ def transcribe_audio(audio_file):
|
|
51 |
except sr.RequestError:
|
52 |
return "Could not request results from Google Speech Recognition service."
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Streamlit app layout
|
55 |
-
st.title("Video and Audio to Text Transcription")
|
56 |
-
st.write("Upload a video or audio file to convert it to transcription.")
|
57 |
|
58 |
# Create tabs to separate video and audio uploads
|
59 |
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"])
|
@@ -71,6 +92,7 @@ if tab == "Video":
|
|
71 |
# Add an "Analyze Video" button
|
72 |
if st.button("Analyze Video"):
|
73 |
with st.spinner("Processing video... Please wait."):
|
|
|
74 |
# Convert video to audio
|
75 |
audio_file = video_to_audio(tmp_video_path)
|
76 |
|
@@ -83,6 +105,14 @@ if tab == "Video":
|
|
83 |
# Show the transcription
|
84 |
st.text_area("Transcription", transcription, height=300)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Store transcription and audio file in session state
|
87 |
st.session_state.transcription = transcription
|
88 |
|
@@ -130,6 +160,7 @@ elif tab == "Audio":
|
|
130 |
# Add an "Analyze Audio" button
|
131 |
if st.button("Analyze Audio"):
|
132 |
with st.spinner("Processing audio... Please wait."):
|
|
|
133 |
# Convert audio to WAV if it's in MP3 format
|
134 |
if uploaded_audio.type == "audio/mpeg":
|
135 |
wav_audio_file = convert_mp3_to_wav(tmp_audio_path)
|
@@ -142,6 +173,14 @@ elif tab == "Audio":
|
|
142 |
# Show the transcription
|
143 |
st.text_area("Transcription", transcription, height=300)
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
# Store transcription in session state
|
146 |
st.session_state.transcription_audio = transcription
|
147 |
|
@@ -173,4 +212,4 @@ elif tab == "Audio":
|
|
173 |
data=st.session_state.wav_audio_file_audio,
|
174 |
file_name="converted_audio_audio.wav",
|
175 |
mime="audio/wav"
|
176 |
-
)
|
|
|
5 |
import tempfile
|
6 |
import os
|
7 |
import io
|
8 |
+
from textblob import TextBlob
|
9 |
+
import numpy as np
|
10 |
+
import wave
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
|
13 |
# Function to convert video to audio
|
14 |
def video_to_audio(video_file):
|
|
|
55 |
except sr.RequestError:
|
56 |
return "Could not request results from Google Speech Recognition service."
|
57 |
|
58 |
+
# Function for sentiment analysis using TextBlob
|
59 |
+
def analyze_sentiment(text):
|
60 |
+
blob = TextBlob(text)
|
61 |
+
sentiment = blob.sentiment
|
62 |
+
return sentiment
|
63 |
+
|
64 |
+
# Function to visualize audio waveform
|
65 |
+
def plot_waveform(audio_file):
|
66 |
+
with wave.open(audio_file, 'r') as w:
|
67 |
+
signal = np.frombuffer(w.readframes(w.getnframes()), dtype=np.int16)
|
68 |
+
plt.figure(figsize=(10, 4))
|
69 |
+
plt.plot(signal)
|
70 |
+
plt.title("Audio Waveform")
|
71 |
+
plt.xlabel("Sample")
|
72 |
+
plt.ylabel("Amplitude")
|
73 |
+
st.pyplot(plt)
|
74 |
+
|
75 |
# Streamlit app layout
|
76 |
+
st.title("Video and Audio to Text Transcription with Sentiment and Visualization")
|
77 |
+
st.write("Upload a video or audio file to convert it to transcription, analyze sentiment, and visualize the audio waveform.")
|
78 |
|
79 |
# Create tabs to separate video and audio uploads
|
80 |
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"])
|
|
|
92 |
# Add an "Analyze Video" button
|
93 |
if st.button("Analyze Video"):
|
94 |
with st.spinner("Processing video... Please wait."):
|
95 |
+
|
96 |
# Convert video to audio
|
97 |
audio_file = video_to_audio(tmp_video_path)
|
98 |
|
|
|
105 |
# Show the transcription
|
106 |
st.text_area("Transcription", transcription, height=300)
|
107 |
|
108 |
+
# Sentiment analysis
|
109 |
+
sentiment = analyze_sentiment(transcription)
|
110 |
+
st.write(f"Sentiment: {sentiment}")
|
111 |
+
|
112 |
+
# Plot the audio waveform
|
113 |
+
st.subheader("Audio Waveform Visualization")
|
114 |
+
plot_waveform(wav_audio_file)
|
115 |
+
|
116 |
# Store transcription and audio file in session state
|
117 |
st.session_state.transcription = transcription
|
118 |
|
|
|
160 |
# Add an "Analyze Audio" button
|
161 |
if st.button("Analyze Audio"):
|
162 |
with st.spinner("Processing audio... Please wait."):
|
163 |
+
|
164 |
# Convert audio to WAV if it's in MP3 format
|
165 |
if uploaded_audio.type == "audio/mpeg":
|
166 |
wav_audio_file = convert_mp3_to_wav(tmp_audio_path)
|
|
|
173 |
# Show the transcription
|
174 |
st.text_area("Transcription", transcription, height=300)
|
175 |
|
176 |
+
# Sentiment analysis
|
177 |
+
sentiment = analyze_sentiment(transcription)
|
178 |
+
st.write(f"Sentiment: {sentiment}")
|
179 |
+
|
180 |
+
# Plot the audio waveform
|
181 |
+
st.subheader("Audio Waveform Visualization")
|
182 |
+
plot_waveform(wav_audio_file)
|
183 |
+
|
184 |
# Store transcription in session state
|
185 |
st.session_state.transcription_audio = transcription
|
186 |
|
|
|
212 |
data=st.session_state.wav_audio_file_audio,
|
213 |
file_name="converted_audio_audio.wav",
|
214 |
mime="audio/wav"
|
215 |
+
)
|