shukdevdatta123's picture
Update app.py
efa4923 verified
import streamlit as st #
import moviepy.editor as mp
import speech_recognition as sr
from pydub import AudioSegment
import tempfile
import os
import io
from transformers import pipeline
import matplotlib.pyplot as plt
# Function to convert video to audio
def video_to_audio(video_file):
# Load the video using moviepy
video = mp.VideoFileClip(video_file)
# Extract audio
audio = video.audio
temp_audio_path = tempfile.mktemp(suffix=".mp3")
# Write the audio to a file
audio.write_audiofile(temp_audio_path)
return temp_audio_path
# Function to convert MP3 audio to WAV
def convert_mp3_to_wav(mp3_file):
# Load the MP3 file using pydub
audio = AudioSegment.from_mp3(mp3_file)
# Create a temporary WAV file
temp_wav_path = tempfile.mktemp(suffix=".wav")
# Export the audio to the temporary WAV file
audio.export(temp_wav_path, format="wav")
return temp_wav_path
# Function to transcribe audio to text
def transcribe_audio(audio_file):
# Initialize recognizer
recognizer = sr.Recognizer()
# Load the audio file using speech_recognition
audio = sr.AudioFile(audio_file)
with audio as source:
audio_data = recognizer.record(source)
try:
# Transcribe the audio data to text using Google Web Speech API
text = recognizer.recognize_google(audio_data)
return text
except sr.UnknownValueError:
return "Audio could not be understood."
except sr.RequestError:
return "Could not request results from Google Speech Recognition service."
# Function to perform emotion detection using Hugging Face transformers
def detect_emotion(text):
# Load emotion detection pipeline
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
# Get the emotion predictions
result = emotion_pipeline(text)
# Extract the emotion with the highest score
emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
return emotions
# Streamlit app layout
st.title("Video and Audio to Text Transcription with Emotion Detection and Visualization")
st.write("Upload a video or audio file to convert it to transcription, detect emotions, and visualize the audio waveform.")
# Create tabs to separate video and audio uploads
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"])
if tab == "Video":
# File uploader for video
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"])
if uploaded_video is not None:
# Save the uploaded video file temporarily
with tempfile.NamedTemporaryFile(delete=False) as tmp_video:
tmp_video.write(uploaded_video.read())
tmp_video_path = tmp_video.name
# Add an "Analyze Video" button
if st.button("Analyze Video"):
with st.spinner("Processing video... Please wait."):
# Convert video to audio
audio_file = video_to_audio(tmp_video_path)
# Convert the extracted MP3 audio to WAV
wav_audio_file = convert_mp3_to_wav(audio_file)
# Transcribe audio to text
transcription = transcribe_audio(wav_audio_file)
# Show the transcription
st.text_area("Transcription", transcription, height=300)
# Emotion detection
emotions = detect_emotion(transcription)
st.write(f"Detected Emotions: {emotions}")
# Store transcription and audio file in session state
st.session_state.transcription = transcription
# Store the audio file as a BytesIO object in memory
with open(wav_audio_file, "rb") as f:
audio_data = f.read()
st.session_state.wav_audio_file = io.BytesIO(audio_data)
# Cleanup temporary files
os.remove(tmp_video_path)
os.remove(audio_file)
# Check if transcription and audio file are stored in session state
if 'transcription' in st.session_state and 'wav_audio_file' in st.session_state:
# Provide the audio file to the user for download
st.audio(st.session_state.wav_audio_file, format='audio/wav')
# Add download buttons for the transcription and audio
# Downloadable transcription file
st.download_button(
label="Download Transcription",
data=st.session_state.transcription,
file_name="transcription.txt",
mime="text/plain"
)
# Downloadable audio file
st.download_button(
label="Download Audio",
data=st.session_state.wav_audio_file,
file_name="converted_audio.wav",
mime="audio/wav"
)
elif tab == "Audio":
# File uploader for audio
uploaded_audio = st.file_uploader("Upload Audio", type=["wav", "mp3"])
if uploaded_audio is not None:
# Save the uploaded audio file temporarily
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
tmp_audio.write(uploaded_audio.read())
tmp_audio_path = tmp_audio.name
# Add an "Analyze Audio" button
if st.button("Analyze Audio"):
with st.spinner("Processing audio... Please wait."):
# Convert audio to WAV if it's in MP3 format
if uploaded_audio.type == "audio/mpeg":
wav_audio_file = convert_mp3_to_wav(tmp_audio_path)
else:
wav_audio_file = tmp_audio_path
# Transcribe audio to text
transcription = transcribe_audio(wav_audio_file)
# Show the transcription
st.text_area("Transcription", transcription, height=300)
# Emotion detection
emotions = detect_emotion(transcription)
st.write(f"Detected Emotions: {emotions}")
# Store transcription in session state
st.session_state.transcription_audio = transcription
# Store the audio file as a BytesIO object in memory
with open(wav_audio_file, "rb") as f:
audio_data = f.read()
st.session_state.wav_audio_file_audio = io.BytesIO(audio_data)
# Cleanup temporary audio file
os.remove(tmp_audio_path)
# Check if transcription and audio file are stored in session state
if 'transcription_audio' in st.session_state and 'wav_audio_file_audio' in st.session_state:
# Provide the audio file to the user for download
st.audio(st.session_state.wav_audio_file_audio, format='audio/wav')
# Add download buttons for the transcription and audio
# Downloadable transcription file
st.download_button(
label="Download Transcription",
data=st.session_state.transcription_audio,
file_name="transcription_audio.txt",
mime="text/plain"
)
# Downloadable audio file
st.download_button(
label="Download Audio",
data=st.session_state.wav_audio_file_audio,
file_name="converted_audio_audio.wav",
mime="audio/wav"
)