File size: 7,616 Bytes
efa4923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import streamlit as st #
import moviepy.editor as mp
import speech_recognition as sr
from pydub import AudioSegment
import tempfile
import os
import io
from transformers import pipeline
import matplotlib.pyplot as plt

# Function to convert video to audio
def video_to_audio(video_file):
    # Load the video using moviepy
    video = mp.VideoFileClip(video_file)
    
    # Extract audio
    audio = video.audio
    temp_audio_path = tempfile.mktemp(suffix=".mp3")
    
    # Write the audio to a file
    audio.write_audiofile(temp_audio_path)
    return temp_audio_path

# Function to convert MP3 audio to WAV
def convert_mp3_to_wav(mp3_file):
    # Load the MP3 file using pydub
    audio = AudioSegment.from_mp3(mp3_file)
    
    # Create a temporary WAV file
    temp_wav_path = tempfile.mktemp(suffix=".wav")
    
    # Export the audio to the temporary WAV file
    audio.export(temp_wav_path, format="wav")
    return temp_wav_path

# Function to transcribe audio to text
def transcribe_audio(audio_file):
    # Initialize recognizer
    recognizer = sr.Recognizer()
    
    # Load the audio file using speech_recognition
    audio = sr.AudioFile(audio_file)
    
    with audio as source:
        audio_data = recognizer.record(source)
    
    try:
        # Transcribe the audio data to text using Google Web Speech API
        text = recognizer.recognize_google(audio_data)
        return text
    except sr.UnknownValueError:
        return "Audio could not be understood."
    except sr.RequestError:
        return "Could not request results from Google Speech Recognition service."

# Function to perform emotion detection using Hugging Face transformers
def detect_emotion(text):
    # Load emotion detection pipeline
    emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
    
    # Get the emotion predictions
    result = emotion_pipeline(text)
    
    # Extract the emotion with the highest score
    emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
    return emotions

# Streamlit app layout
st.title("Video and Audio to Text Transcription with Emotion Detection and Visualization")
st.write("Upload a video or audio file to convert it to transcription, detect emotions, and visualize the audio waveform.")

# Create tabs to separate video and audio uploads
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"])

if tab == "Video":
    # File uploader for video
    uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"])

    if uploaded_video is not None:
        # Save the uploaded video file temporarily
        with tempfile.NamedTemporaryFile(delete=False) as tmp_video:
            tmp_video.write(uploaded_video.read())
            tmp_video_path = tmp_video.name

        # Add an "Analyze Video" button
        if st.button("Analyze Video"):
            with st.spinner("Processing video... Please wait."):

                # Convert video to audio
                audio_file = video_to_audio(tmp_video_path)
                
                # Convert the extracted MP3 audio to WAV
                wav_audio_file = convert_mp3_to_wav(audio_file)
                
                # Transcribe audio to text
                transcription = transcribe_audio(wav_audio_file)

                # Show the transcription
                st.text_area("Transcription", transcription, height=300)

                # Emotion detection
                emotions = detect_emotion(transcription)
                st.write(f"Detected Emotions: {emotions}")

                # Store transcription and audio file in session state
                st.session_state.transcription = transcription
                
                # Store the audio file as a BytesIO object in memory
                with open(wav_audio_file, "rb") as f:
                    audio_data = f.read()
                    st.session_state.wav_audio_file = io.BytesIO(audio_data)

                # Cleanup temporary files
                os.remove(tmp_video_path)
                os.remove(audio_file)

    # Check if transcription and audio file are stored in session state
    if 'transcription' in st.session_state and 'wav_audio_file' in st.session_state:
        # Provide the audio file to the user for download
        st.audio(st.session_state.wav_audio_file, format='audio/wav')
        
        # Add download buttons for the transcription and audio
        # Downloadable transcription file
        st.download_button(
            label="Download Transcription",
            data=st.session_state.transcription,
            file_name="transcription.txt",
            mime="text/plain"
        )
        
        # Downloadable audio file
        st.download_button(
            label="Download Audio",
            data=st.session_state.wav_audio_file,
            file_name="converted_audio.wav",
            mime="audio/wav"
        )

elif tab == "Audio":
    # File uploader for audio
    uploaded_audio = st.file_uploader("Upload Audio", type=["wav", "mp3"])

    if uploaded_audio is not None:
        # Save the uploaded audio file temporarily
        with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
            tmp_audio.write(uploaded_audio.read())
            tmp_audio_path = tmp_audio.name

        # Add an "Analyze Audio" button
        if st.button("Analyze Audio"):
            with st.spinner("Processing audio... Please wait."):

                # Convert audio to WAV if it's in MP3 format
                if uploaded_audio.type == "audio/mpeg":
                    wav_audio_file = convert_mp3_to_wav(tmp_audio_path)
                else:
                    wav_audio_file = tmp_audio_path
                
                # Transcribe audio to text
                transcription = transcribe_audio(wav_audio_file)

                # Show the transcription
                st.text_area("Transcription", transcription, height=300)

                # Emotion detection
                emotions = detect_emotion(transcription)
                st.write(f"Detected Emotions: {emotions}")

                # Store transcription in session state
                st.session_state.transcription_audio = transcription
                
                # Store the audio file as a BytesIO object in memory
                with open(wav_audio_file, "rb") as f:
                    audio_data = f.read()
                    st.session_state.wav_audio_file_audio = io.BytesIO(audio_data)

                # Cleanup temporary audio file
                os.remove(tmp_audio_path)

        # Check if transcription and audio file are stored in session state
        if 'transcription_audio' in st.session_state and 'wav_audio_file_audio' in st.session_state:
            # Provide the audio file to the user for download
            st.audio(st.session_state.wav_audio_file_audio, format='audio/wav')
            
            # Add download buttons for the transcription and audio
            # Downloadable transcription file
            st.download_button(
                label="Download Transcription",
                data=st.session_state.transcription_audio,
                file_name="transcription_audio.txt",
                mime="text/plain"
            )
            
            # Downloadable audio file
            st.download_button(
                label="Download Audio",
                data=st.session_state.wav_audio_file_audio,
                file_name="converted_audio_audio.wav",
                mime="audio/wav"
            )