File size: 7,616 Bytes
efa4923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import streamlit as st #
import moviepy.editor as mp
import speech_recognition as sr
from pydub import AudioSegment
import tempfile
import os
import io
from transformers import pipeline
import matplotlib.pyplot as plt
# Function to convert video to audio
def video_to_audio(video_file):
# Load the video using moviepy
video = mp.VideoFileClip(video_file)
# Extract audio
audio = video.audio
temp_audio_path = tempfile.mktemp(suffix=".mp3")
# Write the audio to a file
audio.write_audiofile(temp_audio_path)
return temp_audio_path
# Function to convert MP3 audio to WAV
def convert_mp3_to_wav(mp3_file):
# Load the MP3 file using pydub
audio = AudioSegment.from_mp3(mp3_file)
# Create a temporary WAV file
temp_wav_path = tempfile.mktemp(suffix=".wav")
# Export the audio to the temporary WAV file
audio.export(temp_wav_path, format="wav")
return temp_wav_path
# Function to transcribe audio to text
def transcribe_audio(audio_file):
# Initialize recognizer
recognizer = sr.Recognizer()
# Load the audio file using speech_recognition
audio = sr.AudioFile(audio_file)
with audio as source:
audio_data = recognizer.record(source)
try:
# Transcribe the audio data to text using Google Web Speech API
text = recognizer.recognize_google(audio_data)
return text
except sr.UnknownValueError:
return "Audio could not be understood."
except sr.RequestError:
return "Could not request results from Google Speech Recognition service."
# Function to perform emotion detection using Hugging Face transformers
def detect_emotion(text):
# Load emotion detection pipeline
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
# Get the emotion predictions
result = emotion_pipeline(text)
# Extract the emotion with the highest score
emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
return emotions
# Streamlit app layout
st.title("Video and Audio to Text Transcription with Emotion Detection and Visualization")
st.write("Upload a video or audio file to convert it to transcription, detect emotions, and visualize the audio waveform.")
# Create tabs to separate video and audio uploads
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"])
if tab == "Video":
# File uploader for video
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"])
if uploaded_video is not None:
# Save the uploaded video file temporarily
with tempfile.NamedTemporaryFile(delete=False) as tmp_video:
tmp_video.write(uploaded_video.read())
tmp_video_path = tmp_video.name
# Add an "Analyze Video" button
if st.button("Analyze Video"):
with st.spinner("Processing video... Please wait."):
# Convert video to audio
audio_file = video_to_audio(tmp_video_path)
# Convert the extracted MP3 audio to WAV
wav_audio_file = convert_mp3_to_wav(audio_file)
# Transcribe audio to text
transcription = transcribe_audio(wav_audio_file)
# Show the transcription
st.text_area("Transcription", transcription, height=300)
# Emotion detection
emotions = detect_emotion(transcription)
st.write(f"Detected Emotions: {emotions}")
# Store transcription and audio file in session state
st.session_state.transcription = transcription
# Store the audio file as a BytesIO object in memory
with open(wav_audio_file, "rb") as f:
audio_data = f.read()
st.session_state.wav_audio_file = io.BytesIO(audio_data)
# Cleanup temporary files
os.remove(tmp_video_path)
os.remove(audio_file)
# Check if transcription and audio file are stored in session state
if 'transcription' in st.session_state and 'wav_audio_file' in st.session_state:
# Provide the audio file to the user for download
st.audio(st.session_state.wav_audio_file, format='audio/wav')
# Add download buttons for the transcription and audio
# Downloadable transcription file
st.download_button(
label="Download Transcription",
data=st.session_state.transcription,
file_name="transcription.txt",
mime="text/plain"
)
# Downloadable audio file
st.download_button(
label="Download Audio",
data=st.session_state.wav_audio_file,
file_name="converted_audio.wav",
mime="audio/wav"
)
elif tab == "Audio":
# File uploader for audio
uploaded_audio = st.file_uploader("Upload Audio", type=["wav", "mp3"])
if uploaded_audio is not None:
# Save the uploaded audio file temporarily
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
tmp_audio.write(uploaded_audio.read())
tmp_audio_path = tmp_audio.name
# Add an "Analyze Audio" button
if st.button("Analyze Audio"):
with st.spinner("Processing audio... Please wait."):
# Convert audio to WAV if it's in MP3 format
if uploaded_audio.type == "audio/mpeg":
wav_audio_file = convert_mp3_to_wav(tmp_audio_path)
else:
wav_audio_file = tmp_audio_path
# Transcribe audio to text
transcription = transcribe_audio(wav_audio_file)
# Show the transcription
st.text_area("Transcription", transcription, height=300)
# Emotion detection
emotions = detect_emotion(transcription)
st.write(f"Detected Emotions: {emotions}")
# Store transcription in session state
st.session_state.transcription_audio = transcription
# Store the audio file as a BytesIO object in memory
with open(wav_audio_file, "rb") as f:
audio_data = f.read()
st.session_state.wav_audio_file_audio = io.BytesIO(audio_data)
# Cleanup temporary audio file
os.remove(tmp_audio_path)
# Check if transcription and audio file are stored in session state
if 'transcription_audio' in st.session_state and 'wav_audio_file_audio' in st.session_state:
# Provide the audio file to the user for download
st.audio(st.session_state.wav_audio_file_audio, format='audio/wav')
# Add download buttons for the transcription and audio
# Downloadable transcription file
st.download_button(
label="Download Transcription",
data=st.session_state.transcription_audio,
file_name="transcription_audio.txt",
mime="text/plain"
)
# Downloadable audio file
st.download_button(
label="Download Audio",
data=st.session_state.wav_audio_file_audio,
file_name="converted_audio_audio.wav",
mime="audio/wav"
) |