File size: 20,043 Bytes
ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 efa4923 ee377d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import streamlit as st
import moviepy.editor as mp
import speech_recognition as sr
from pydub import AudioSegment
import tempfile
import os
import io
from transformers import pipeline
import matplotlib.pyplot as plt
import gc
import warnings
warnings.filterwarnings("ignore")
# Configure Streamlit for large file uploads
st.set_page_config(
page_title="Video/Audio Transcription with Emotion Detection",
page_icon="π¬",
layout="wide"
)
# Set maximum upload size (this needs to be set before any file upload widgets)
# Note: You'll also need to configure this in your Streamlit config file or environment
@st.cache_data
def get_config():
return {"maxUploadSize": 1024} # 1GB in MB
# Function to convert video to audio with progress tracking
def video_to_audio(video_file, progress_callback=None):
"""Convert video to audio with memory optimization"""
try:
# Load the video using moviepy with memory optimization
video = mp.VideoFileClip(video_file)
# Extract audio
audio = video.audio
temp_audio_path = tempfile.mktemp(suffix=".mp3")
# Write the audio to a file with progress tracking
if progress_callback:
progress_callback(50) # 50% progress
audio.write_audiofile(temp_audio_path, verbose=False, logger=None)
# Clean up video object to free memory
audio.close()
video.close()
del video, audio
gc.collect()
if progress_callback:
progress_callback(100) # 100% progress
return temp_audio_path
except Exception as e:
st.error(f"Error converting video to audio: {str(e)}")
return None
# Function to convert MP3 audio to WAV
def convert_mp3_to_wav(mp3_file):
"""Convert MP3 to WAV with memory optimization"""
try:
# Load the MP3 file using pydub
audio = AudioSegment.from_mp3(mp3_file)
# Create a temporary WAV file
temp_wav_path = tempfile.mktemp(suffix=".wav")
# Export the audio to the temporary WAV file
audio.export(temp_wav_path, format="wav")
# Clean up to free memory
del audio
gc.collect()
return temp_wav_path
except Exception as e:
st.error(f"Error converting MP3 to WAV: {str(e)}")
return None
# Function to transcribe audio to text with chunking for large files
def transcribe_audio(audio_file, chunk_duration=60):
"""Transcribe audio to text with chunking for large files"""
try:
# Initialize recognizer
recognizer = sr.Recognizer()
# Load audio and get duration
audio_segment = AudioSegment.from_wav(audio_file)
duration = len(audio_segment) / 1000 # Duration in seconds
transcriptions = []
# If audio is longer than chunk_duration, split it
if duration > chunk_duration:
num_chunks = int(duration / chunk_duration) + 1
for i in range(num_chunks):
start_time = i * chunk_duration * 1000 # Convert to milliseconds
end_time = min((i + 1) * chunk_duration * 1000, len(audio_segment))
# Extract chunk
chunk = audio_segment[start_time:end_time]
# Save chunk temporarily
chunk_path = tempfile.mktemp(suffix=".wav")
chunk.export(chunk_path, format="wav")
# Transcribe chunk
try:
with sr.AudioFile(chunk_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
transcriptions.append(text)
except (sr.UnknownValueError, sr.RequestError):
transcriptions.append(f"[Chunk {i+1}: Audio could not be transcribed]")
# Clean up chunk file
os.remove(chunk_path)
# Update progress
progress = int(((i + 1) / num_chunks) * 100)
st.progress(progress / 100, text=f"Transcribing... {progress}%")
else:
# For shorter audio, transcribe directly
with sr.AudioFile(audio_file) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
transcriptions.append(text)
# Join all transcriptions
full_transcription = " ".join(transcriptions)
# Clean up
del audio_segment
gc.collect()
return full_transcription
except sr.UnknownValueError:
return "Audio could not be understood."
except sr.RequestError as e:
return f"Could not request results from Google Speech Recognition service: {str(e)}"
except Exception as e:
return f"Error during transcription: {str(e)}"
# Function to perform emotion detection using Hugging Face transformers
@st.cache_resource
def load_emotion_model():
"""Load emotion detection model (cached)"""
return pipeline("text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True)
def detect_emotion(text):
"""Detect emotions in text"""
try:
emotion_pipeline = load_emotion_model()
# Split text into chunks if it's too long (model has token limits)
max_length = 500
if len(text) > max_length:
chunks = [text[i:i+max_length] for i in range(0, len(text), max_length)]
all_emotions = {}
for chunk in chunks:
result = emotion_pipeline(chunk)
chunk_emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
# Aggregate emotions
for emotion, score in chunk_emotions.items():
if emotion in all_emotions:
all_emotions[emotion] = (all_emotions[emotion] + score) / 2
else:
all_emotions[emotion] = score
return all_emotions
else:
result = emotion_pipeline(text)
emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
return emotions
except Exception as e:
st.error(f"Error in emotion detection: {str(e)}")
return {"error": "Could not analyze emotions"}
# Function to visualize emotions
def plot_emotions(emotions):
"""Create a bar chart of emotions"""
if "error" in emotions:
return None
fig, ax = plt.subplots(figsize=(10, 6))
emotions_sorted = dict(sorted(emotions.items(), key=lambda x: x[1], reverse=True))
colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8']
bars = ax.bar(emotions_sorted.keys(), emotions_sorted.values(),
color=colors[:len(emotions_sorted)])
ax.set_xlabel('Emotions')
ax.set_ylabel('Confidence Score')
ax.set_title('Emotion Detection Results')
ax.set_ylim(0, 1)
# Add value labels on bars
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{height:.3f}', ha='center', va='bottom')
plt.xticks(rotation=45)
plt.tight_layout()
return fig
# Streamlit app layout
st.title("π¬ Video and Audio Transcription with Emotion Detection")
st.write("Upload video files up to 1GB or audio files for transcription and emotion analysis.")
# Display file size information
st.info("π **File Size Limits**: Video files up to 1GB, Audio files up to 500MB")
# Add instructions for large file uploads
with st.expander("π Instructions for Large Files"):
st.write("""
**For optimal performance with large files:**
1. Ensure stable internet connection
2. Be patient - large files take time to process
3. Don't close the browser tab during processing
4. For very large files, consider splitting them beforehand
**Supported formats:**
- **Video**: MP4, MOV, AVI
- **Audio**: WAV, MP3
""")
# Create tabs to separate video and audio uploads
tab1, tab2 = st.tabs(["πΉ Video Upload", "π΅ Audio Upload"])
with tab1:
st.header("Video File Processing")
# File uploader for video with increased size limit
uploaded_video = st.file_uploader(
"Upload Video File",
type=["mp4", "mov", "avi"],
help="Maximum file size: 1GB"
)
if uploaded_video is not None:
# Display file information
file_size_mb = uploaded_video.size / (1024 * 1024)
st.info(f"π **File Info**: {uploaded_video.name} ({file_size_mb:.1f} MB)")
# Show video preview for smaller files
if file_size_mb < 100: # Only show preview for files under 100MB
st.video(uploaded_video)
# Save the uploaded video file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_video:
tmp_video.write(uploaded_video.read())
tmp_video_path = tmp_video.name
# Add an "Analyze Video" button
if st.button("π Analyze Video", type="primary"):
progress_bar = st.progress(0)
status_text = st.empty()
try:
with st.spinner("Processing video... This may take several minutes for large files."):
status_text.text("Step 1/4: Converting video to audio...")
progress_bar.progress(10)
# Convert video to audio
audio_file = video_to_audio(tmp_video_path,
lambda p: progress_bar.progress(10 + p * 0.3))
if audio_file is None:
st.error("Failed to extract audio from video.")
st.stop()
status_text.text("Step 2/4: Converting audio format...")
progress_bar.progress(50)
# Convert the extracted MP3 audio to WAV
wav_audio_file = convert_mp3_to_wav(audio_file)
if wav_audio_file is None:
st.error("Failed to convert audio format.")
st.stop()
status_text.text("Step 3/4: Transcribing audio to text...")
progress_bar.progress(60)
# Transcribe audio to text
transcription = transcribe_audio(wav_audio_file)
status_text.text("Step 4/4: Analyzing emotions...")
progress_bar.progress(90)
# Emotion detection
emotions = detect_emotion(transcription)
progress_bar.progress(100)
status_text.text("β
Processing complete!")
# Display results
st.success("Analysis completed successfully!")
# Show the transcription
st.subheader("π Transcription")
st.text_area("", transcription, height=300, key="video_transcription")
# Show emotions
st.subheader("π Emotion Analysis")
col1, col2 = st.columns([1, 1])
with col1:
st.write("**Detected Emotions:**")
for emotion, score in emotions.items():
st.write(f"- **{emotion.title()}**: {score:.3f}")
with col2:
fig = plot_emotions(emotions)
if fig:
st.pyplot(fig)
# Store results in session state
st.session_state.video_transcription = transcription
st.session_state.video_emotions = emotions
# Store the audio file as a BytesIO object in memory
with open(wav_audio_file, "rb") as f:
audio_data = f.read()
st.session_state.video_wav_audio_file = io.BytesIO(audio_data)
# Cleanup temporary files
os.remove(tmp_video_path)
os.remove(audio_file)
os.remove(wav_audio_file)
except Exception as e:
st.error(f"An error occurred during processing: {str(e)}")
# Clean up files in case of error
try:
os.remove(tmp_video_path)
if 'audio_file' in locals() and audio_file:
os.remove(audio_file)
if 'wav_audio_file' in locals() and wav_audio_file:
os.remove(wav_audio_file)
except:
pass
# Check if results are stored in session state
if 'video_transcription' in st.session_state and 'video_wav_audio_file' in st.session_state:
st.subheader("π₯ Download Results")
col1, col2, col3 = st.columns(3)
with col1:
# Provide the audio file to the user for playback
st.audio(st.session_state.video_wav_audio_file, format='audio/wav')
with col2:
# Downloadable transcription file
st.download_button(
label="π Download Transcription",
data=st.session_state.video_transcription,
file_name="video_transcription.txt",
mime="text/plain"
)
with col3:
# Downloadable audio file
st.download_button(
label="π΅ Download Audio",
data=st.session_state.video_wav_audio_file,
file_name="extracted_audio.wav",
mime="audio/wav"
)
with tab2:
st.header("Audio File Processing")
# File uploader for audio
uploaded_audio = st.file_uploader(
"Upload Audio File",
type=["wav", "mp3"],
help="Maximum file size: 500MB"
)
if uploaded_audio is not None:
# Display file information
file_size_mb = uploaded_audio.size / (1024 * 1024)
st.info(f"π **File Info**: {uploaded_audio.name} ({file_size_mb:.1f} MB)")
# Show audio player
st.audio(uploaded_audio)
# Save the uploaded audio file temporarily
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
tmp_audio.write(uploaded_audio.read())
tmp_audio_path = tmp_audio.name
# Add an "Analyze Audio" button
if st.button("π Analyze Audio", type="primary"):
progress_bar = st.progress(0)
status_text = st.empty()
try:
with st.spinner("Processing audio... Please wait."):
status_text.text("Step 1/3: Converting audio format...")
progress_bar.progress(20)
# Convert audio to WAV if it's in MP3 format
if uploaded_audio.type == "audio/mpeg":
wav_audio_file = convert_mp3_to_wav(tmp_audio_path)
else:
wav_audio_file = tmp_audio_path
if wav_audio_file is None:
st.error("Failed to process audio file.")
st.stop()
status_text.text("Step 2/3: Transcribing audio to text...")
progress_bar.progress(40)
# Transcribe audio to text
transcription = transcribe_audio(wav_audio_file)
status_text.text("Step 3/3: Analyzing emotions...")
progress_bar.progress(80)
# Emotion detection
emotions = detect_emotion(transcription)
progress_bar.progress(100)
status_text.text("β
Processing complete!")
# Display results
st.success("Analysis completed successfully!")
# Show the transcription
st.subheader("π Transcription")
st.text_area("", transcription, height=300, key="audio_transcription")
# Show emotions
st.subheader("π Emotion Analysis")
col1, col2 = st.columns([1, 1])
with col1:
st.write("**Detected Emotions:**")
for emotion, score in emotions.items():
st.write(f"- **{emotion.title()}**: {score:.3f}")
with col2:
fig = plot_emotions(emotions)
if fig:
st.pyplot(fig)
# Store results in session state
st.session_state.audio_transcription = transcription
st.session_state.audio_emotions = emotions
# Store the audio file as a BytesIO object in memory
with open(wav_audio_file, "rb") as f:
audio_data = f.read()
st.session_state.audio_wav_audio_file = io.BytesIO(audio_data)
# Cleanup temporary audio file
os.remove(tmp_audio_path)
if wav_audio_file != tmp_audio_path:
os.remove(wav_audio_file)
except Exception as e:
st.error(f"An error occurred during processing: {str(e)}")
# Clean up files in case of error
try:
os.remove(tmp_audio_path)
if 'wav_audio_file' in locals() and wav_audio_file and wav_audio_file != tmp_audio_path:
os.remove(wav_audio_file)
except:
pass
# Check if results are stored in session state
if 'audio_transcription' in st.session_state and 'audio_wav_audio_file' in st.session_state:
st.subheader("π₯ Download Results")
col1, col2 = st.columns(2)
with col1:
# Downloadable transcription file
st.download_button(
label="π Download Transcription",
data=st.session_state.audio_transcription,
file_name="audio_transcription.txt",
mime="text/plain"
)
with col2:
# Downloadable audio file
st.download_button(
label="π΅ Download Processed Audio",
data=st.session_state.audio_wav_audio_file,
file_name="processed_audio.wav",
mime="audio/wav"
)
# Footer
st.markdown("---")
st.markdown("Built with β€οΈ using Streamlit, MoviePy, and HuggingFace Transformers") |