Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import streamlit as st
|
2 |
import moviepy.editor as mp
|
3 |
import speech_recognition as sr
|
4 |
from pydub import AudioSegment
|
@@ -7,194 +7,506 @@ import os
|
|
7 |
import io
|
8 |
from transformers import pipeline
|
9 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Function to convert MP3 audio to WAV
|
25 |
def convert_mp3_to_wav(mp3_file):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
try:
|
48 |
-
#
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except sr.UnknownValueError:
|
52 |
return "Audio could not be understood."
|
53 |
-
except sr.RequestError:
|
54 |
-
return "Could not request results from Google Speech Recognition service
|
|
|
|
|
55 |
|
56 |
# Function to perform emotion detection using Hugging Face transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def detect_emotion(text):
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Streamlit app layout
|
69 |
-
st.title("Video and Audio
|
70 |
-
st.write("Upload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Create tabs to separate video and audio uploads
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
if uploaded_video is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Save the uploaded video file temporarily
|
81 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp_video:
|
82 |
tmp_video.write(uploaded_video.read())
|
83 |
tmp_video_path = tmp_video.name
|
84 |
|
85 |
# Add an "Analyze Video" button
|
86 |
-
if st.button("Analyze Video"):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
# Store the audio file as a BytesIO object in memory
|
109 |
-
with open(wav_audio_file, "rb") as f:
|
110 |
-
audio_data = f.read()
|
111 |
-
st.session_state.wav_audio_file = io.BytesIO(audio_data)
|
112 |
-
|
113 |
-
# Cleanup temporary files
|
114 |
-
os.remove(tmp_video_path)
|
115 |
-
os.remove(audio_file)
|
116 |
-
|
117 |
-
# Check if transcription and audio file are stored in session state
|
118 |
-
if 'transcription' in st.session_state and 'wav_audio_file' in st.session_state:
|
119 |
-
# Provide the audio file to the user for download
|
120 |
-
st.audio(st.session_state.wav_audio_file, format='audio/wav')
|
121 |
-
|
122 |
-
# Add download buttons for the transcription and audio
|
123 |
-
# Downloadable transcription file
|
124 |
-
st.download_button(
|
125 |
-
label="Download Transcription",
|
126 |
-
data=st.session_state.transcription,
|
127 |
-
file_name="transcription.txt",
|
128 |
-
mime="text/plain"
|
129 |
-
)
|
130 |
-
|
131 |
-
# Downloadable audio file
|
132 |
-
st.download_button(
|
133 |
-
label="Download Audio",
|
134 |
-
data=st.session_state.wav_audio_file,
|
135 |
-
file_name="converted_audio.wav",
|
136 |
-
mime="audio/wav"
|
137 |
-
)
|
138 |
-
|
139 |
-
elif tab == "Audio":
|
140 |
# File uploader for audio
|
141 |
-
uploaded_audio = st.file_uploader(
|
|
|
|
|
|
|
|
|
142 |
|
143 |
if uploaded_audio is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# Save the uploaded audio file temporarily
|
145 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
|
146 |
tmp_audio.write(uploaded_audio.read())
|
147 |
tmp_audio_path = tmp_audio.name
|
148 |
|
149 |
# Add an "Analyze Audio" button
|
150 |
-
if st.button("Analyze Audio"):
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
else:
|
157 |
-
wav_audio_file = tmp_audio_path
|
158 |
-
|
159 |
-
# Transcribe audio to text
|
160 |
-
transcription = transcribe_audio(wav_audio_file)
|
161 |
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
184 |
|
185 |
-
|
186 |
-
# Downloadable transcription file
|
187 |
-
st.download_button(
|
188 |
-
label="Download Transcription",
|
189 |
-
data=st.session_state.transcription_audio,
|
190 |
-
file_name="transcription_audio.txt",
|
191 |
-
mime="text/plain"
|
192 |
-
)
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import moviepy.editor as mp
|
3 |
import speech_recognition as sr
|
4 |
from pydub import AudioSegment
|
|
|
7 |
import io
|
8 |
from transformers import pipeline
|
9 |
import matplotlib.pyplot as plt
|
10 |
+
import gc
|
11 |
+
import warnings
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
|
14 |
+
# Configure Streamlit for large file uploads
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="Video/Audio Transcription with Emotion Detection",
|
17 |
+
page_icon="π¬",
|
18 |
+
layout="wide"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Set maximum upload size (this needs to be set before any file upload widgets)
|
22 |
+
# Note: You'll also need to configure this in your Streamlit config file or environment
|
23 |
+
@st.cache_data
|
24 |
+
def get_config():
|
25 |
+
return {"maxUploadSize": 1024} # 1GB in MB
|
26 |
+
|
27 |
+
# Function to convert video to audio with progress tracking
|
28 |
+
def video_to_audio(video_file, progress_callback=None):
|
29 |
+
"""Convert video to audio with memory optimization"""
|
30 |
+
try:
|
31 |
+
# Load the video using moviepy with memory optimization
|
32 |
+
video = mp.VideoFileClip(video_file)
|
33 |
+
|
34 |
+
# Extract audio
|
35 |
+
audio = video.audio
|
36 |
+
temp_audio_path = tempfile.mktemp(suffix=".mp3")
|
37 |
+
|
38 |
+
# Write the audio to a file with progress tracking
|
39 |
+
if progress_callback:
|
40 |
+
progress_callback(50) # 50% progress
|
41 |
+
|
42 |
+
audio.write_audiofile(temp_audio_path, verbose=False, logger=None)
|
43 |
+
|
44 |
+
# Clean up video object to free memory
|
45 |
+
audio.close()
|
46 |
+
video.close()
|
47 |
+
del video, audio
|
48 |
+
gc.collect()
|
49 |
+
|
50 |
+
if progress_callback:
|
51 |
+
progress_callback(100) # 100% progress
|
52 |
+
|
53 |
+
return temp_audio_path
|
54 |
+
except Exception as e:
|
55 |
+
st.error(f"Error converting video to audio: {str(e)}")
|
56 |
+
return None
|
57 |
|
58 |
# Function to convert MP3 audio to WAV
|
59 |
def convert_mp3_to_wav(mp3_file):
|
60 |
+
"""Convert MP3 to WAV with memory optimization"""
|
61 |
+
try:
|
62 |
+
# Load the MP3 file using pydub
|
63 |
+
audio = AudioSegment.from_mp3(mp3_file)
|
64 |
+
|
65 |
+
# Create a temporary WAV file
|
66 |
+
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
67 |
+
|
68 |
+
# Export the audio to the temporary WAV file
|
69 |
+
audio.export(temp_wav_path, format="wav")
|
70 |
+
|
71 |
+
# Clean up to free memory
|
72 |
+
del audio
|
73 |
+
gc.collect()
|
74 |
+
|
75 |
+
return temp_wav_path
|
76 |
+
except Exception as e:
|
77 |
+
st.error(f"Error converting MP3 to WAV: {str(e)}")
|
78 |
+
return None
|
79 |
+
|
80 |
+
# Function to transcribe audio to text with chunking for large files
|
81 |
+
def transcribe_audio(audio_file, chunk_duration=60):
|
82 |
+
"""Transcribe audio to text with chunking for large files"""
|
83 |
try:
|
84 |
+
# Initialize recognizer
|
85 |
+
recognizer = sr.Recognizer()
|
86 |
+
|
87 |
+
# Load audio and get duration
|
88 |
+
audio_segment = AudioSegment.from_wav(audio_file)
|
89 |
+
duration = len(audio_segment) / 1000 # Duration in seconds
|
90 |
+
|
91 |
+
transcriptions = []
|
92 |
+
|
93 |
+
# If audio is longer than chunk_duration, split it
|
94 |
+
if duration > chunk_duration:
|
95 |
+
num_chunks = int(duration / chunk_duration) + 1
|
96 |
+
|
97 |
+
for i in range(num_chunks):
|
98 |
+
start_time = i * chunk_duration * 1000 # Convert to milliseconds
|
99 |
+
end_time = min((i + 1) * chunk_duration * 1000, len(audio_segment))
|
100 |
+
|
101 |
+
# Extract chunk
|
102 |
+
chunk = audio_segment[start_time:end_time]
|
103 |
+
|
104 |
+
# Save chunk temporarily
|
105 |
+
chunk_path = tempfile.mktemp(suffix=".wav")
|
106 |
+
chunk.export(chunk_path, format="wav")
|
107 |
+
|
108 |
+
# Transcribe chunk
|
109 |
+
try:
|
110 |
+
with sr.AudioFile(chunk_path) as source:
|
111 |
+
audio_data = recognizer.record(source)
|
112 |
+
text = recognizer.recognize_google(audio_data)
|
113 |
+
transcriptions.append(text)
|
114 |
+
except (sr.UnknownValueError, sr.RequestError):
|
115 |
+
transcriptions.append(f"[Chunk {i+1}: Audio could not be transcribed]")
|
116 |
+
|
117 |
+
# Clean up chunk file
|
118 |
+
os.remove(chunk_path)
|
119 |
+
|
120 |
+
# Update progress
|
121 |
+
progress = int(((i + 1) / num_chunks) * 100)
|
122 |
+
st.progress(progress / 100, text=f"Transcribing... {progress}%")
|
123 |
+
|
124 |
+
else:
|
125 |
+
# For shorter audio, transcribe directly
|
126 |
+
with sr.AudioFile(audio_file) as source:
|
127 |
+
audio_data = recognizer.record(source)
|
128 |
+
text = recognizer.recognize_google(audio_data)
|
129 |
+
transcriptions.append(text)
|
130 |
+
|
131 |
+
# Join all transcriptions
|
132 |
+
full_transcription = " ".join(transcriptions)
|
133 |
+
|
134 |
+
# Clean up
|
135 |
+
del audio_segment
|
136 |
+
gc.collect()
|
137 |
+
|
138 |
+
return full_transcription
|
139 |
+
|
140 |
except sr.UnknownValueError:
|
141 |
return "Audio could not be understood."
|
142 |
+
except sr.RequestError as e:
|
143 |
+
return f"Could not request results from Google Speech Recognition service: {str(e)}"
|
144 |
+
except Exception as e:
|
145 |
+
return f"Error during transcription: {str(e)}"
|
146 |
|
147 |
# Function to perform emotion detection using Hugging Face transformers
|
148 |
+
@st.cache_resource
|
149 |
+
def load_emotion_model():
|
150 |
+
"""Load emotion detection model (cached)"""
|
151 |
+
return pipeline("text-classification",
|
152 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
153 |
+
return_all_scores=True)
|
154 |
+
|
155 |
def detect_emotion(text):
|
156 |
+
"""Detect emotions in text"""
|
157 |
+
try:
|
158 |
+
emotion_pipeline = load_emotion_model()
|
159 |
+
|
160 |
+
# Split text into chunks if it's too long (model has token limits)
|
161 |
+
max_length = 500
|
162 |
+
if len(text) > max_length:
|
163 |
+
chunks = [text[i:i+max_length] for i in range(0, len(text), max_length)]
|
164 |
+
all_emotions = {}
|
165 |
+
|
166 |
+
for chunk in chunks:
|
167 |
+
result = emotion_pipeline(chunk)
|
168 |
+
chunk_emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
|
169 |
+
|
170 |
+
# Aggregate emotions
|
171 |
+
for emotion, score in chunk_emotions.items():
|
172 |
+
if emotion in all_emotions:
|
173 |
+
all_emotions[emotion] = (all_emotions[emotion] + score) / 2
|
174 |
+
else:
|
175 |
+
all_emotions[emotion] = score
|
176 |
+
|
177 |
+
return all_emotions
|
178 |
+
else:
|
179 |
+
result = emotion_pipeline(text)
|
180 |
+
emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
|
181 |
+
return emotions
|
182 |
+
|
183 |
+
except Exception as e:
|
184 |
+
st.error(f"Error in emotion detection: {str(e)}")
|
185 |
+
return {"error": "Could not analyze emotions"}
|
186 |
+
|
187 |
+
# Function to visualize emotions
|
188 |
+
def plot_emotions(emotions):
|
189 |
+
"""Create a bar chart of emotions"""
|
190 |
+
if "error" in emotions:
|
191 |
+
return None
|
192 |
+
|
193 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
194 |
+
emotions_sorted = dict(sorted(emotions.items(), key=lambda x: x[1], reverse=True))
|
195 |
+
|
196 |
+
colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8']
|
197 |
+
bars = ax.bar(emotions_sorted.keys(), emotions_sorted.values(),
|
198 |
+
color=colors[:len(emotions_sorted)])
|
199 |
|
200 |
+
ax.set_xlabel('Emotions')
|
201 |
+
ax.set_ylabel('Confidence Score')
|
202 |
+
ax.set_title('Emotion Detection Results')
|
203 |
+
ax.set_ylim(0, 1)
|
204 |
|
205 |
+
# Add value labels on bars
|
206 |
+
for bar in bars:
|
207 |
+
height = bar.get_height()
|
208 |
+
ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
|
209 |
+
f'{height:.3f}', ha='center', va='bottom')
|
210 |
+
|
211 |
+
plt.xticks(rotation=45)
|
212 |
+
plt.tight_layout()
|
213 |
+
return fig
|
214 |
|
215 |
# Streamlit app layout
|
216 |
+
st.title("π¬ Video and Audio Transcription with Emotion Detection")
|
217 |
+
st.write("Upload video files up to 1GB or audio files for transcription and emotion analysis.")
|
218 |
+
|
219 |
+
# Display file size information
|
220 |
+
st.info("π **File Size Limits**: Video files up to 1GB, Audio files up to 500MB")
|
221 |
+
|
222 |
+
# Add instructions for large file uploads
|
223 |
+
with st.expander("π Instructions for Large Files"):
|
224 |
+
st.write("""
|
225 |
+
**For optimal performance with large files:**
|
226 |
+
1. Ensure stable internet connection
|
227 |
+
2. Be patient - large files take time to process
|
228 |
+
3. Don't close the browser tab during processing
|
229 |
+
4. For very large files, consider splitting them beforehand
|
230 |
+
|
231 |
+
**Supported formats:**
|
232 |
+
- **Video**: MP4, MOV, AVI
|
233 |
+
- **Audio**: WAV, MP3
|
234 |
+
""")
|
235 |
|
236 |
# Create tabs to separate video and audio uploads
|
237 |
+
tab1, tab2 = st.tabs(["πΉ Video Upload", "π΅ Audio Upload"])
|
238 |
|
239 |
+
with tab1:
|
240 |
+
st.header("Video File Processing")
|
241 |
+
|
242 |
+
# File uploader for video with increased size limit
|
243 |
+
uploaded_video = st.file_uploader(
|
244 |
+
"Upload Video File",
|
245 |
+
type=["mp4", "mov", "avi"],
|
246 |
+
help="Maximum file size: 1GB"
|
247 |
+
)
|
248 |
|
249 |
if uploaded_video is not None:
|
250 |
+
# Display file information
|
251 |
+
file_size_mb = uploaded_video.size / (1024 * 1024)
|
252 |
+
st.info(f"π **File Info**: {uploaded_video.name} ({file_size_mb:.1f} MB)")
|
253 |
+
|
254 |
+
# Show video preview for smaller files
|
255 |
+
if file_size_mb < 100: # Only show preview for files under 100MB
|
256 |
+
st.video(uploaded_video)
|
257 |
+
|
258 |
# Save the uploaded video file temporarily
|
259 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_video:
|
260 |
tmp_video.write(uploaded_video.read())
|
261 |
tmp_video_path = tmp_video.name
|
262 |
|
263 |
# Add an "Analyze Video" button
|
264 |
+
if st.button("π Analyze Video", type="primary"):
|
265 |
+
progress_bar = st.progress(0)
|
266 |
+
status_text = st.empty()
|
267 |
+
|
268 |
+
try:
|
269 |
+
with st.spinner("Processing video... This may take several minutes for large files."):
|
270 |
+
|
271 |
+
status_text.text("Step 1/4: Converting video to audio...")
|
272 |
+
progress_bar.progress(10)
|
273 |
+
|
274 |
+
# Convert video to audio
|
275 |
+
audio_file = video_to_audio(tmp_video_path,
|
276 |
+
lambda p: progress_bar.progress(10 + p * 0.3))
|
277 |
+
|
278 |
+
if audio_file is None:
|
279 |
+
st.error("Failed to extract audio from video.")
|
280 |
+
st.stop()
|
281 |
+
|
282 |
+
status_text.text("Step 2/4: Converting audio format...")
|
283 |
+
progress_bar.progress(50)
|
284 |
+
|
285 |
+
# Convert the extracted MP3 audio to WAV
|
286 |
+
wav_audio_file = convert_mp3_to_wav(audio_file)
|
287 |
+
|
288 |
+
if wav_audio_file is None:
|
289 |
+
st.error("Failed to convert audio format.")
|
290 |
+
st.stop()
|
291 |
+
|
292 |
+
status_text.text("Step 3/4: Transcribing audio to text...")
|
293 |
+
progress_bar.progress(60)
|
294 |
+
|
295 |
+
# Transcribe audio to text
|
296 |
+
transcription = transcribe_audio(wav_audio_file)
|
297 |
+
|
298 |
+
status_text.text("Step 4/4: Analyzing emotions...")
|
299 |
+
progress_bar.progress(90)
|
300 |
+
|
301 |
+
# Emotion detection
|
302 |
+
emotions = detect_emotion(transcription)
|
303 |
+
|
304 |
+
progress_bar.progress(100)
|
305 |
+
status_text.text("β
Processing complete!")
|
306 |
+
|
307 |
+
# Display results
|
308 |
+
st.success("Analysis completed successfully!")
|
309 |
+
|
310 |
+
# Show the transcription
|
311 |
+
st.subheader("π Transcription")
|
312 |
+
st.text_area("", transcription, height=300, key="video_transcription")
|
313 |
+
|
314 |
+
# Show emotions
|
315 |
+
st.subheader("π Emotion Analysis")
|
316 |
+
col1, col2 = st.columns([1, 1])
|
317 |
+
|
318 |
+
with col1:
|
319 |
+
st.write("**Detected Emotions:**")
|
320 |
+
for emotion, score in emotions.items():
|
321 |
+
st.write(f"- **{emotion.title()}**: {score:.3f}")
|
322 |
+
|
323 |
+
with col2:
|
324 |
+
fig = plot_emotions(emotions)
|
325 |
+
if fig:
|
326 |
+
st.pyplot(fig)
|
327 |
+
|
328 |
+
# Store results in session state
|
329 |
+
st.session_state.video_transcription = transcription
|
330 |
+
st.session_state.video_emotions = emotions
|
331 |
+
|
332 |
+
# Store the audio file as a BytesIO object in memory
|
333 |
+
with open(wav_audio_file, "rb") as f:
|
334 |
+
audio_data = f.read()
|
335 |
+
st.session_state.video_wav_audio_file = io.BytesIO(audio_data)
|
336 |
|
337 |
+
# Cleanup temporary files
|
338 |
+
os.remove(tmp_video_path)
|
339 |
+
os.remove(audio_file)
|
340 |
+
os.remove(wav_audio_file)
|
341 |
+
|
342 |
+
except Exception as e:
|
343 |
+
st.error(f"An error occurred during processing: {str(e)}")
|
344 |
+
# Clean up files in case of error
|
345 |
+
try:
|
346 |
+
os.remove(tmp_video_path)
|
347 |
+
if 'audio_file' in locals() and audio_file:
|
348 |
+
os.remove(audio_file)
|
349 |
+
if 'wav_audio_file' in locals() and wav_audio_file:
|
350 |
+
os.remove(wav_audio_file)
|
351 |
+
except:
|
352 |
+
pass
|
353 |
|
354 |
+
# Check if results are stored in session state
|
355 |
+
if 'video_transcription' in st.session_state and 'video_wav_audio_file' in st.session_state:
|
356 |
+
st.subheader("π₯ Download Results")
|
357 |
+
|
358 |
+
col1, col2, col3 = st.columns(3)
|
359 |
+
|
360 |
+
with col1:
|
361 |
+
# Provide the audio file to the user for playback
|
362 |
+
st.audio(st.session_state.video_wav_audio_file, format='audio/wav')
|
363 |
+
|
364 |
+
with col2:
|
365 |
+
# Downloadable transcription file
|
366 |
+
st.download_button(
|
367 |
+
label="π Download Transcription",
|
368 |
+
data=st.session_state.video_transcription,
|
369 |
+
file_name="video_transcription.txt",
|
370 |
+
mime="text/plain"
|
371 |
+
)
|
372 |
+
|
373 |
+
with col3:
|
374 |
+
# Downloadable audio file
|
375 |
+
st.download_button(
|
376 |
+
label="π΅ Download Audio",
|
377 |
+
data=st.session_state.video_wav_audio_file,
|
378 |
+
file_name="extracted_audio.wav",
|
379 |
+
mime="audio/wav"
|
380 |
+
)
|
381 |
|
382 |
+
with tab2:
|
383 |
+
st.header("Audio File Processing")
|
384 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
# File uploader for audio
|
386 |
+
uploaded_audio = st.file_uploader(
|
387 |
+
"Upload Audio File",
|
388 |
+
type=["wav", "mp3"],
|
389 |
+
help="Maximum file size: 500MB"
|
390 |
+
)
|
391 |
|
392 |
if uploaded_audio is not None:
|
393 |
+
# Display file information
|
394 |
+
file_size_mb = uploaded_audio.size / (1024 * 1024)
|
395 |
+
st.info(f"π **File Info**: {uploaded_audio.name} ({file_size_mb:.1f} MB)")
|
396 |
+
|
397 |
+
# Show audio player
|
398 |
+
st.audio(uploaded_audio)
|
399 |
+
|
400 |
# Save the uploaded audio file temporarily
|
401 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
|
402 |
tmp_audio.write(uploaded_audio.read())
|
403 |
tmp_audio_path = tmp_audio.name
|
404 |
|
405 |
# Add an "Analyze Audio" button
|
406 |
+
if st.button("π Analyze Audio", type="primary"):
|
407 |
+
progress_bar = st.progress(0)
|
408 |
+
status_text = st.empty()
|
409 |
+
|
410 |
+
try:
|
411 |
+
with st.spinner("Processing audio... Please wait."):
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
+
status_text.text("Step 1/3: Converting audio format...")
|
414 |
+
progress_bar.progress(20)
|
415 |
+
|
416 |
+
# Convert audio to WAV if it's in MP3 format
|
417 |
+
if uploaded_audio.type == "audio/mpeg":
|
418 |
+
wav_audio_file = convert_mp3_to_wav(tmp_audio_path)
|
419 |
+
else:
|
420 |
+
wav_audio_file = tmp_audio_path
|
421 |
+
|
422 |
+
if wav_audio_file is None:
|
423 |
+
st.error("Failed to process audio file.")
|
424 |
+
st.stop()
|
425 |
+
|
426 |
+
status_text.text("Step 2/3: Transcribing audio to text...")
|
427 |
+
progress_bar.progress(40)
|
428 |
+
|
429 |
+
# Transcribe audio to text
|
430 |
+
transcription = transcribe_audio(wav_audio_file)
|
431 |
+
|
432 |
+
status_text.text("Step 3/3: Analyzing emotions...")
|
433 |
+
progress_bar.progress(80)
|
434 |
+
|
435 |
+
# Emotion detection
|
436 |
+
emotions = detect_emotion(transcription)
|
437 |
+
|
438 |
+
progress_bar.progress(100)
|
439 |
+
status_text.text("β
Processing complete!")
|
440 |
+
|
441 |
+
# Display results
|
442 |
+
st.success("Analysis completed successfully!")
|
443 |
+
|
444 |
+
# Show the transcription
|
445 |
+
st.subheader("π Transcription")
|
446 |
+
st.text_area("", transcription, height=300, key="audio_transcription")
|
447 |
+
|
448 |
+
# Show emotions
|
449 |
+
st.subheader("π Emotion Analysis")
|
450 |
+
col1, col2 = st.columns([1, 1])
|
451 |
+
|
452 |
+
with col1:
|
453 |
+
st.write("**Detected Emotions:**")
|
454 |
+
for emotion, score in emotions.items():
|
455 |
+
st.write(f"- **{emotion.title()}**: {score:.3f}")
|
456 |
+
|
457 |
+
with col2:
|
458 |
+
fig = plot_emotions(emotions)
|
459 |
+
if fig:
|
460 |
+
st.pyplot(fig)
|
461 |
|
462 |
+
# Store results in session state
|
463 |
+
st.session_state.audio_transcription = transcription
|
464 |
+
st.session_state.audio_emotions = emotions
|
465 |
+
|
466 |
+
# Store the audio file as a BytesIO object in memory
|
467 |
+
with open(wav_audio_file, "rb") as f:
|
468 |
+
audio_data = f.read()
|
469 |
+
st.session_state.audio_wav_audio_file = io.BytesIO(audio_data)
|
470 |
|
471 |
+
# Cleanup temporary audio file
|
472 |
+
os.remove(tmp_audio_path)
|
473 |
+
if wav_audio_file != tmp_audio_path:
|
474 |
+
os.remove(wav_audio_file)
|
475 |
+
|
476 |
+
except Exception as e:
|
477 |
+
st.error(f"An error occurred during processing: {str(e)}")
|
478 |
+
# Clean up files in case of error
|
479 |
+
try:
|
480 |
+
os.remove(tmp_audio_path)
|
481 |
+
if 'wav_audio_file' in locals() and wav_audio_file and wav_audio_file != tmp_audio_path:
|
482 |
+
os.remove(wav_audio_file)
|
483 |
+
except:
|
484 |
+
pass
|
485 |
+
|
486 |
+
# Check if results are stored in session state
|
487 |
+
if 'audio_transcription' in st.session_state and 'audio_wav_audio_file' in st.session_state:
|
488 |
+
st.subheader("π₯ Download Results")
|
489 |
|
490 |
+
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
+
with col1:
|
493 |
+
# Downloadable transcription file
|
494 |
+
st.download_button(
|
495 |
+
label="π Download Transcription",
|
496 |
+
data=st.session_state.audio_transcription,
|
497 |
+
file_name="audio_transcription.txt",
|
498 |
+
mime="text/plain"
|
499 |
+
)
|
500 |
+
|
501 |
+
with col2:
|
502 |
+
# Downloadable audio file
|
503 |
+
st.download_button(
|
504 |
+
label="π΅ Download Processed Audio",
|
505 |
+
data=st.session_state.audio_wav_audio_file,
|
506 |
+
file_name="processed_audio.wav",
|
507 |
+
mime="audio/wav"
|
508 |
+
)
|
509 |
+
|
510 |
+
# Footer
|
511 |
+
st.markdown("---")
|
512 |
+
st.markdown("Built with β€οΈ using Streamlit, MoviePy, and HuggingFace Transformers")
|