File size: 18,791 Bytes
eaa4360
 
5016e38
e555f36
1b21a19
238e053
 
 
eaa4360
238e053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d39c096
 
 
 
 
 
 
d9fb8b5
 
 
d39c096
 
 
 
 
 
 
 
 
 
d9fb8b5
d39c096
 
 
 
d9fb8b5
d39c096
 
 
 
d9fb8b5
d39c096
 
d9fb8b5
d39c096
 
 
238e053
 
eaa4360
 
 
 
 
238e053
 
 
 
 
 
5016e38
 
238e053
 
 
 
5016e38
e555f36
 
238e053
7f12ed4
238e053
7f12ed4
 
 
d9fb8b5
7f12ed4
e555f36
 
d9fb8b5
e555f36
 
eaa4360
b1a1b1c
eaa4360
238e053
5016e38
6561c39
eaa4360
5016e38
d9fb8b5
eaa4360
 
 
 
 
5b332f1
eaa4360
 
 
 
 
 
c4ff6ca
 
 
 
 
 
272a0b4
c4ff6ca
272a0b4
0ce5160
272a0b4
 
 
 
 
 
 
 
d9fb8b5
c4ff6ca
 
 
eaa4360
d9fb8b5
 
 
 
c4ff6ca
bd42163
c4ff6ca
238e053
02e9dd4
 
 
 
238e053
d39c096
d9fb8b5
 
 
 
b3ba75f
d9fb8b5
b3ba75f
238e053
d39c096
 
 
 
 
b3ba75f
d9fb8b5
b3ba75f
d9fb8b5
b3ba75f
d39c096
b3ba75f
eaa4360
02e9dd4
eaa4360
02e9dd4
eaa4360
02e9dd4
238e053
02e9dd4
 
 
 
 
eaa4360
6ad9d96
 
 
d9fb8b5
6ad9d96
d9fb8b5
6ad9d96
d9fb8b5
238e053
d9fb8b5
d39c096
d9fb8b5
6ad9d96
5c92c98
3e5c357
 
 
 
380b344
 
3e5c357
 
 
380b344
3e5c357
 
 
 
380b344
3e5c357
 
 
 
 
 
 
 
 
 
 
 
 
 
380b344
 
3e5c357
 
d39c096
3e5c357
380b344
 
3e5c357
d39c096
380b344
 
3e5c357
 
5c92c98
 
380b344
3e5c357
 
e327d09
74e0dd8
477f138
e327d09
 
ea7518b
 
 
a7e7cfd
3e5c357
5c92c98
380b344
 
3e5c357
5c92c98
3e5c357
 
5c92c98
9b7ca0c
a579e5b
5c92c98
 
5200bd8
5c92c98
 
 
ea7518b
5c92c98
 
9b7ca0c
380b344
5c92c98
 
 
 
6ad9d96
 
 
 
 
 
 
 
380b344
6ad9d96
 
 
 
 
 
 
 
 
380b344
6ad9d96
 
380b344
6ad9d96
3e5c357
 
 
 
 
380b344
3e5c357
 
 
 
 
 
 
380b344
 
3e5c357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7518b
 
 
 
 
 
 
 
 
 
 
d39c096
ea7518b
 
 
 
 
 
 
3e5c357
 
e555f36
eaa4360
3e5c357
bd42163
 
d39c096
02e9dd4
bd42163
 
35d1afd
bd42163
 
 
 
d39c096
02e9dd4
 
 
 
d39c096
02e9dd4
 
 
 
 
 
 
 
bd42163
35d1afd
238e053
02e9dd4
238e053
35d1afd
 
2f56112
6ad9d96
bd42163
6ad9d96
d39c096
6ad9d96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238e053
02e9dd4
238e053
 
 
 
 
d39c096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5c357
0d11d75
02e9dd4
 
 
 
 
 
 
 
 
 
 
 
0d11d75
02e9dd4
13a5c1f
6ad9d96
 
 
 
d39c096
238e053
 
 
 
02e9dd4
238e053
02e9dd4
6ad9d96
 
35d1afd
6ad9d96
 
d9fb8b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad9d96
 
02e9dd4
6ad9d96
 
02e9dd4
6ad9d96
eaa4360
35d1afd
eaa4360
e555f36
eaa4360
e555f36
bd42163
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import gradio as gr
import openai
import base64
from PIL import Image
import io
import os
import tempfile
import fitz  # PyMuPDF for PDF handling

# Function to extract text from PDF files
def extract_text_from_pdf(pdf_file):
    try:
        text = ""
        pdf_document = fitz.open(pdf_file)
        
        for page_num in range(len(pdf_document)):
            page = pdf_document[page_num]
            text += page.get_text()
            
        pdf_document.close()
        return text
    except Exception as e:
        return f"Error extracting text from PDF: {str(e)}"

# Function to generate MCQ quiz from PDF content
def generate_mcq_quiz(pdf_content, num_questions, openai_api_key, model_choice):
    if not openai_api_key:
        return "Error: No API key provided."
    
    openai.api_key = openai_api_key
    
    # Limit content length to avoid token limits
    limited_content = pdf_content[:8000] if len(pdf_content) > 8000 else pdf_content
    
    prompt = f"""Based on the following document content, generate {num_questions} multiple-choice quiz questions.
For each question:
1. Create a clear question based on key concepts in the document
2. Provide 4 possible answers (A, B, C, D)
3. Indicate the correct answer
4. Briefly explain why the answer is correct

Format the output clearly with each question numbered and separated.

Document content:
{limited_content}
"""
    
    try:
        messages = [
            {"role": "user", "content": prompt}
        ]
        
        response = openai.ChatCompletion.create(
            model=model_choice,
            messages=messages
        )
        
        return response.choices[0].message.content
    except Exception as e:
        return f"Error generating quiz: {str(e)}"

# Function to send the request to OpenAI API with an image, text or PDF input
def generate_response(input_text, image, pdf_content, openai_api_key, reasoning_effort="medium", model_choice="o1"):
    if not openai_api_key:
        return "Error: No API key provided."

    openai.api_key = openai_api_key

    # Process the input depending on whether it's text, image, or a PDF-related query
    if pdf_content and input_text:
        # For PDF queries, we combine the PDF content with the user's question
        prompt = f"Based on the following document content, please answer this question: '{input_text}'\n\nDocument content:\n{pdf_content}"
        input_content = prompt
    elif image:
        # Convert the image to base64 string
        image_info = get_base64_string_from_image(image)
        input_content = f"data:image/png;base64,{image_info}"
    else:
        # Plain text input
        input_content = input_text

    # Prepare the messages for OpenAI API
    if model_choice == "o1":
        if image and not pdf_content:
            messages = [
                {"role": "user", "content": [{"type": "image_url", "image_url": {"url": input_content}}]}
            ]
        else:
            messages = [
                {"role": "user", "content": input_content}
            ]
    elif model_choice == "o3-mini":
        messages = [
            {"role": "user", "content": input_content}
        ]
    
    try:
        # Call OpenAI API with the selected model
        response = openai.ChatCompletion.create(
            model=model_choice,
            messages=messages,
            max_completion_tokens=2000
        )

        return response.choices[0].message.content
    except Exception as e:
        return f"Error calling OpenAI API: {str(e)}"

# Function to convert an uploaded image to a base64 string
def get_base64_string_from_image(pil_image):
    # Convert PIL Image to bytes
    buffered = io.BytesIO()
    pil_image.save(buffered, format="PNG")
    img_bytes = buffered.getvalue()
    base64_str = base64.b64encode(img_bytes).decode("utf-8")
    return base64_str

# Function to transcribe audio to text using OpenAI Whisper API
def transcribe_audio(audio, openai_api_key):
    if not openai_api_key:
        return "Error: No API key provided."
    
    openai.api_key = openai_api_key
    
    try:
        # Open the audio file and pass it as a file object
        with open(audio, 'rb') as audio_file:
            audio_file_content = audio_file.read()
        
        # Use the correct transcription API call
        audio_file_obj = io.BytesIO(audio_file_content)
        audio_file_obj.name = 'audio.wav'  # Set a name for the file object (as OpenAI expects it)

        # Transcribe the audio to text using OpenAI's whisper model
        audio_file_transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1")
        return audio_file_transcription.text
    except Exception as e:
        return f"Error transcribing audio: {str(e)}"

# The function that will be used by Gradio interface
def chatbot(input_text, image, audio, pdf_file, openai_api_key, reasoning_effort, model_choice, pdf_content, num_quiz_questions, pdf_quiz_mode, history):
    if history is None:
        history = []
        
    # If there's audio, transcribe it to text
    if audio:
        input_text = transcribe_audio(audio, openai_api_key)
    
    # If a new PDF is uploaded, extract its text
    new_pdf_content = pdf_content
    if pdf_file is not None:
        new_pdf_content = extract_text_from_pdf(pdf_file)
    
    # Check if we're in PDF quiz mode
    if pdf_quiz_mode:
        if new_pdf_content:
            # Generate MCQ quiz questions
            quiz_response = generate_mcq_quiz(new_pdf_content, int(num_quiz_questions), openai_api_key, model_choice)
            history.append((f"πŸ‘€: [Uploaded PDF for Quiz - {int(num_quiz_questions)} questions]", f"πŸ€–: {quiz_response}"))
        else:
            history.append(("πŸ‘€: [Attempted to generate quiz without PDF]", "πŸ€–: Please upload a PDF file to generate quiz questions."))
    else:
        # Regular chat mode - generate the response
        response = generate_response(input_text, image, new_pdf_content, openai_api_key, reasoning_effort, model_choice)
        
        # Append the response to the history
        if input_text:
            history.append((f"πŸ‘€: {input_text}", f"πŸ€–: {response}"))
        elif image is not None:
            history.append((f"πŸ‘€: [Uploaded image]", f"πŸ€–: {response}"))
        elif pdf_file is not None:
            history.append((f"πŸ‘€: [Uploaded PDF]", f"πŸ€–: {response}"))
        else:
            history.append((f"πŸ‘€: [No input provided]", f"πŸ€–: Please provide some input (text, image, or PDF) for me to respond to."))
    
    return "", None, None, None, new_pdf_content, history

# Function to clear the chat history and PDF content
def clear_history():
    return "", None, None, None, "", []

# Function to process a newly uploaded PDF
def process_pdf(pdf_file):
    if pdf_file is None:
        return ""
    return extract_text_from_pdf(pdf_file)

# Function to update visible components based on input type selection
def update_input_type(choice):
    if choice == "Text":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=False)
    elif choice == "Image":
        return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=False)
    elif choice == "Voice":
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value=False)
    elif choice == "PDF":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=False)
    elif choice == "PDF(QUIZ)":
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=True)
    
# Custom CSS styles with animations and button colors
custom_css = """
    /* General body styles */
    .gradio-container {
        font-family: 'Arial', sans-serif;
        background-color: #f0f4f8; /* Lighter blue-gray background */
        color: #2d3748;;
    }
    /* Header styles */
    .gradio-header {
        background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
        color: white;
        padding: 20px;
        text-align: center;
        border-radius: 8px;
        box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
        animation: fadeIn 1s ease-out;
    }
    .gradio-header h1 {
        font-size: 2.5rem;
    }
    .gradio-header h3 {
        font-size: 1.2rem;
        margin-top: 10px;
    }
    /* Chatbot container styles */
    .gradio-chatbot {
        background-color: #fff;
        border-radius: 10px;
        padding: 20px;
        box-shadow: 0 6px 18px rgba(0, 0, 0, 0.1);
        border-left: 4px solid #4a00e0; /* Accent border */
    }
    /* Input field styles */
    .gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider {
        border-radius: 8px;
        border: 2px solid #e2e8f0;
        background-color: #f8fafc;
    }
    .gradio-textbox:focus, .gradio-dropdown:focus, .gradio-image:focus, .gradio-audio:focus, .gradio-file:focus, .gradio-slider:focus {
        border-color: #8e2de2;
        box-shadow: 0 0 0 3px rgba(142, 45, 226, 0.2);
    }
    /* Button styles */
    /* Send Button: Sky Blue */
    #submit-btn {
        background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
        color: white;
        border: none;
        border-radius: 8px;
        padding: 10px 19px;
        font-size: 1.1rem;
        cursor: pointer;
        transition: all 0.3s ease;
        margin-left: auto;
        margin-right: auto;
        display: block;
        margin-top: 10px;
    }
    #submit-btn:hover {
        background: linear-gradient(135deg, #5b10f1 0%, #9f3ef3 100%); /* Slightly lighter */
        box-shadow: 0 6px 8px rgba(74, 0, 224, 0.4);
    }
    #submit-btn:active {
        transform: scale(0.95);
    }
    #clear-history {
        background: linear-gradient(135deg, #e53e3e 0%, #f56565 100%); /* Red gradient */
        color: white;
        border: none;
        border-radius: 8px;
        padding: 10px 13px;
        font-size: 1.1rem;
        cursor: pointer;
        transition: all 0.3s ease;
        margin-top: 10px;
    }
    #clear-history:hover {
        background: linear-gradient(135deg, #c53030 0%, #e53e3e 100%); /* Slightly darker red gradient on hover */
        box-shadow: 0 6px 8px rgba(229, 62, 62, 0.4);
    }
    #clear-history:active {
        transform: scale(0.95);
    }
    /* Input type selector buttons */
    #input-type-group {
        display: flex;
        justify-content: center;
        gap: 10px;
        margin-bottom: 20px;
    }
    .input-type-btn {
        background-color: #718096; /* Slate gray */
        color: white;
        border: none;
        border-radius: 8px;
        padding: 10px 15px;
        font-size: 1rem;
        cursor: pointer;
        transition: all 0.3s ease;
    }
    .input-type-btn.selected {
        background-color: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
    }
    .input-type-btn:hover {
        background-color: #4a5568; /* Darker slate */
    }
    /* Chat history styles */
    .gradio-chatbot .message {
        margin-bottom: 10px;
    }
    .gradio-chatbot .user {
        background-color: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
        color: white;
        padding: 10px;
        border-radius: 12px;
        max-width: 70%;
        animation: slideInUser 0.5s ease-out;
    }
    .gradio-chatbot .assistant {
        background-color: #f0f4f8; /* Light blue-gray */
        color: #2d3748;
        padding: 10px;
        border-radius: 12px;
        max-width: 70%;
        margin-left: auto;
        animation: slideInAssistant 0.5s ease-out;
    }
    /* Animation keyframes */
    @keyframes fadeIn {
        0% { opacity: 0; }
        100% { opacity: 1; }
    }
    @keyframes slideInUser {
        0% { transform: translateX(-100%); }
        100% { transform: translateX(0); }
    }
    @keyframes slideInAssistant {
        0% { transform: translateX(100%); }
        100% { transform: translateX(0); }
    }
    /* Mobile responsiveness */
    @media (max-width: 768px) {
        .gradio-header h1 {
            font-size: 1.8rem;
        }
        .gradio-header h3 {
            font-size: 1rem;
        }
        .gradio-chatbot {
            max-height: 400px;
        }
        .gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider {
            width: 100%;
        }
        #submit-btn, #clear-history {
            width: 100%;
            margin-left: 0;
        }
    }
"""

# Gradio interface setup
def create_interface():
    with gr.Blocks(css=custom_css) as demo:
        gr.Markdown("""
            <div class="gradio-header">
                <h1>Multimodal Chatbot (Text + Image + Voice + PDF + Quiz)</h1>
                <h3>Interact with a chatbot using text, image, voice, or PDF inputs</h3>
            </div>
        """)

        # Add a description with an expandable accordion
        with gr.Accordion("Click to expand for details", open=False):
            gr.Markdown("""
            ### Description:
            This is a multimodal chatbot that can handle text, image, voice, PDF inputs, and generate quizzes from PDFs. 
            - You can ask questions or provide text, and the assistant will respond.
            - You can upload an image, and the assistant will process it and answer questions about the image.
            - Voice input is supported: You can upload or record an audio file, and it will be transcribed to text and sent to the assistant.
            - PDF support: Upload a PDF and ask questions about its content.
            - PDF Quiz: Upload a PDF and specify how many MCQ questions you want generated based on the content.
            - Enter your OpenAI API key to start interacting with the model.
            - You can use the 'Clear History' button to remove the conversation history.
            - "o1" is for image, voice, PDF and text chat and "o3-mini" is for text, PDF and voice chat only.
            ### Reasoning Effort:
            The reasoning effort controls how complex or detailed the assistant's answers should be. 
            - **Low**: Provides quick, concise answers with minimal reasoning or details.
            - **Medium**: Offers a balanced response with a reasonable level of detail and thought.
            - **High**: Produces more detailed, analytical, or thoughtful responses, requiring deeper reasoning.
            """)

        # Store PDF content as a state variable
        pdf_content = gr.State("")

        with gr.Row():
            openai_api_key = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="sk-...", interactive=True)

        # Input type selector
        with gr.Row():
            input_type = gr.Radio(
                ["Text", "Image", "Voice", "PDF", "PDF(QUIZ)"], 
                label="Choose Input Type", 
                value="Text"
            )

        # Create the input components (initially text is visible, others are hidden)
        with gr.Row():
            # Text input
            input_text = gr.Textbox(
                label="Enter Text Question", 
                placeholder="Ask a question or provide text", 
                lines=2,
                visible=True
            )
            
            # Image input
            image_input = gr.Image(
                label="Upload an Image", 
                type="pil",
                visible=False
            )
            
            # Audio input
            audio_input = gr.Audio(
                label="Upload or Record Audio", 
                type="filepath",
                visible=False
            )
            
            # PDF input
            pdf_input = gr.File(
                label="Upload your PDF",
                file_types=[".pdf"],
                visible=False
            )
            
            # Quiz specific components
            quiz_questions_slider = gr.Slider(
                minimum=1, 
                maximum=20, 
                value=5, 
                step=1, 
                label="Number of Quiz Questions", 
                visible=False
            )
            
            # Hidden state for quiz mode
            quiz_mode = gr.Checkbox(
                label="Quiz Mode", 
                visible=False,
                value=False
            )

        with gr.Row():
            reasoning_effort = gr.Dropdown(
                label="Reasoning Effort",
                choices=["low", "medium", "high"],
                value="medium"
            )
            model_choice = gr.Dropdown(
                label="Select Model",
                choices=["o1", "o3-mini"],
                value="o1"  # Default to 'o1' for image-related tasks
            )
            submit_btn = gr.Button("Ask!", elem_id="submit-btn")
            clear_btn = gr.Button("Clear History", elem_id="clear-history")

        chat_history = gr.Chatbot()

        # Connect the input type selector to the update function
        input_type.change(
            fn=update_input_type,
            inputs=[input_type],
            outputs=[input_text, image_input, audio_input, pdf_input, quiz_questions_slider, quiz_mode]
        )
        
        # Process PDF when uploaded
        pdf_input.change(
            fn=process_pdf,
            inputs=[pdf_input],
            outputs=[pdf_content]
        )

        # Button interactions
        submit_btn.click(
            fn=chatbot, 
            inputs=[
                input_text, 
                image_input, 
                audio_input, 
                pdf_input, 
                openai_api_key, 
                reasoning_effort, 
                model_choice, 
                pdf_content, 
                quiz_questions_slider, 
                quiz_mode, 
                chat_history
            ], 
            outputs=[
                input_text, 
                image_input, 
                audio_input, 
                pdf_input, 
                pdf_content, 
                chat_history
            ]
        )
        
        clear_btn.click(
            fn=clear_history, 
            inputs=[], 
            outputs=[input_text, image_input, audio_input, pdf_input, pdf_content, chat_history]
        )

    return demo

# Run the interface
if __name__ == "__main__":
    demo = create_interface()
    demo.launch()