File size: 18,791 Bytes
eaa4360 5016e38 e555f36 1b21a19 238e053 eaa4360 238e053 d39c096 d9fb8b5 d39c096 d9fb8b5 d39c096 d9fb8b5 d39c096 d9fb8b5 d39c096 d9fb8b5 d39c096 238e053 eaa4360 238e053 5016e38 238e053 5016e38 e555f36 238e053 7f12ed4 238e053 7f12ed4 d9fb8b5 7f12ed4 e555f36 d9fb8b5 e555f36 eaa4360 b1a1b1c eaa4360 238e053 5016e38 6561c39 eaa4360 5016e38 d9fb8b5 eaa4360 5b332f1 eaa4360 c4ff6ca 272a0b4 c4ff6ca 272a0b4 0ce5160 272a0b4 d9fb8b5 c4ff6ca eaa4360 d9fb8b5 c4ff6ca bd42163 c4ff6ca 238e053 02e9dd4 238e053 d39c096 d9fb8b5 b3ba75f d9fb8b5 b3ba75f 238e053 d39c096 b3ba75f d9fb8b5 b3ba75f d9fb8b5 b3ba75f d39c096 b3ba75f eaa4360 02e9dd4 eaa4360 02e9dd4 eaa4360 02e9dd4 238e053 02e9dd4 eaa4360 6ad9d96 d9fb8b5 6ad9d96 d9fb8b5 6ad9d96 d9fb8b5 238e053 d9fb8b5 d39c096 d9fb8b5 6ad9d96 5c92c98 3e5c357 380b344 3e5c357 380b344 3e5c357 380b344 3e5c357 380b344 3e5c357 d39c096 3e5c357 380b344 3e5c357 d39c096 380b344 3e5c357 5c92c98 380b344 3e5c357 e327d09 74e0dd8 477f138 e327d09 ea7518b a7e7cfd 3e5c357 5c92c98 380b344 3e5c357 5c92c98 3e5c357 5c92c98 9b7ca0c a579e5b 5c92c98 5200bd8 5c92c98 ea7518b 5c92c98 9b7ca0c 380b344 5c92c98 6ad9d96 380b344 6ad9d96 380b344 6ad9d96 380b344 6ad9d96 3e5c357 380b344 3e5c357 380b344 3e5c357 ea7518b d39c096 ea7518b 3e5c357 e555f36 eaa4360 3e5c357 bd42163 d39c096 02e9dd4 bd42163 35d1afd bd42163 d39c096 02e9dd4 d39c096 02e9dd4 bd42163 35d1afd 238e053 02e9dd4 238e053 35d1afd 2f56112 6ad9d96 bd42163 6ad9d96 d39c096 6ad9d96 238e053 02e9dd4 238e053 d39c096 3e5c357 0d11d75 02e9dd4 0d11d75 02e9dd4 13a5c1f 6ad9d96 d39c096 238e053 02e9dd4 238e053 02e9dd4 6ad9d96 35d1afd 6ad9d96 d9fb8b5 6ad9d96 02e9dd4 6ad9d96 02e9dd4 6ad9d96 eaa4360 35d1afd eaa4360 e555f36 eaa4360 e555f36 bd42163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import gradio as gr
import openai
import base64
from PIL import Image
import io
import os
import tempfile
import fitz # PyMuPDF for PDF handling
# Function to extract text from PDF files
def extract_text_from_pdf(pdf_file):
try:
text = ""
pdf_document = fitz.open(pdf_file)
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
text += page.get_text()
pdf_document.close()
return text
except Exception as e:
return f"Error extracting text from PDF: {str(e)}"
# Function to generate MCQ quiz from PDF content
def generate_mcq_quiz(pdf_content, num_questions, openai_api_key, model_choice):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
# Limit content length to avoid token limits
limited_content = pdf_content[:8000] if len(pdf_content) > 8000 else pdf_content
prompt = f"""Based on the following document content, generate {num_questions} multiple-choice quiz questions.
For each question:
1. Create a clear question based on key concepts in the document
2. Provide 4 possible answers (A, B, C, D)
3. Indicate the correct answer
4. Briefly explain why the answer is correct
Format the output clearly with each question numbered and separated.
Document content:
{limited_content}
"""
try:
messages = [
{"role": "user", "content": prompt}
]
response = openai.ChatCompletion.create(
model=model_choice,
messages=messages
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating quiz: {str(e)}"
# Function to send the request to OpenAI API with an image, text or PDF input
def generate_response(input_text, image, pdf_content, openai_api_key, reasoning_effort="medium", model_choice="o1"):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
# Process the input depending on whether it's text, image, or a PDF-related query
if pdf_content and input_text:
# For PDF queries, we combine the PDF content with the user's question
prompt = f"Based on the following document content, please answer this question: '{input_text}'\n\nDocument content:\n{pdf_content}"
input_content = prompt
elif image:
# Convert the image to base64 string
image_info = get_base64_string_from_image(image)
input_content = f"data:image/png;base64,{image_info}"
else:
# Plain text input
input_content = input_text
# Prepare the messages for OpenAI API
if model_choice == "o1":
if image and not pdf_content:
messages = [
{"role": "user", "content": [{"type": "image_url", "image_url": {"url": input_content}}]}
]
else:
messages = [
{"role": "user", "content": input_content}
]
elif model_choice == "o3-mini":
messages = [
{"role": "user", "content": input_content}
]
try:
# Call OpenAI API with the selected model
response = openai.ChatCompletion.create(
model=model_choice,
messages=messages,
max_completion_tokens=2000
)
return response.choices[0].message.content
except Exception as e:
return f"Error calling OpenAI API: {str(e)}"
# Function to convert an uploaded image to a base64 string
def get_base64_string_from_image(pil_image):
# Convert PIL Image to bytes
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
base64_str = base64.b64encode(img_bytes).decode("utf-8")
return base64_str
# Function to transcribe audio to text using OpenAI Whisper API
def transcribe_audio(audio, openai_api_key):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
try:
# Open the audio file and pass it as a file object
with open(audio, 'rb') as audio_file:
audio_file_content = audio_file.read()
# Use the correct transcription API call
audio_file_obj = io.BytesIO(audio_file_content)
audio_file_obj.name = 'audio.wav' # Set a name for the file object (as OpenAI expects it)
# Transcribe the audio to text using OpenAI's whisper model
audio_file_transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1")
return audio_file_transcription.text
except Exception as e:
return f"Error transcribing audio: {str(e)}"
# The function that will be used by Gradio interface
def chatbot(input_text, image, audio, pdf_file, openai_api_key, reasoning_effort, model_choice, pdf_content, num_quiz_questions, pdf_quiz_mode, history):
if history is None:
history = []
# If there's audio, transcribe it to text
if audio:
input_text = transcribe_audio(audio, openai_api_key)
# If a new PDF is uploaded, extract its text
new_pdf_content = pdf_content
if pdf_file is not None:
new_pdf_content = extract_text_from_pdf(pdf_file)
# Check if we're in PDF quiz mode
if pdf_quiz_mode:
if new_pdf_content:
# Generate MCQ quiz questions
quiz_response = generate_mcq_quiz(new_pdf_content, int(num_quiz_questions), openai_api_key, model_choice)
history.append((f"π€: [Uploaded PDF for Quiz - {int(num_quiz_questions)} questions]", f"π€: {quiz_response}"))
else:
history.append(("π€: [Attempted to generate quiz without PDF]", "π€: Please upload a PDF file to generate quiz questions."))
else:
# Regular chat mode - generate the response
response = generate_response(input_text, image, new_pdf_content, openai_api_key, reasoning_effort, model_choice)
# Append the response to the history
if input_text:
history.append((f"π€: {input_text}", f"π€: {response}"))
elif image is not None:
history.append((f"π€: [Uploaded image]", f"π€: {response}"))
elif pdf_file is not None:
history.append((f"π€: [Uploaded PDF]", f"π€: {response}"))
else:
history.append((f"π€: [No input provided]", f"π€: Please provide some input (text, image, or PDF) for me to respond to."))
return "", None, None, None, new_pdf_content, history
# Function to clear the chat history and PDF content
def clear_history():
return "", None, None, None, "", []
# Function to process a newly uploaded PDF
def process_pdf(pdf_file):
if pdf_file is None:
return ""
return extract_text_from_pdf(pdf_file)
# Function to update visible components based on input type selection
def update_input_type(choice):
if choice == "Text":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=False)
elif choice == "Image":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=False)
elif choice == "Voice":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value=False)
elif choice == "PDF":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=False)
elif choice == "PDF(QUIZ)":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=True)
# Custom CSS styles with animations and button colors
custom_css = """
/* General body styles */
.gradio-container {
font-family: 'Arial', sans-serif;
background-color: #f0f4f8; /* Lighter blue-gray background */
color: #2d3748;;
}
/* Header styles */
.gradio-header {
background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
color: white;
padding: 20px;
text-align: center;
border-radius: 8px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
animation: fadeIn 1s ease-out;
}
.gradio-header h1 {
font-size: 2.5rem;
}
.gradio-header h3 {
font-size: 1.2rem;
margin-top: 10px;
}
/* Chatbot container styles */
.gradio-chatbot {
background-color: #fff;
border-radius: 10px;
padding: 20px;
box-shadow: 0 6px 18px rgba(0, 0, 0, 0.1);
border-left: 4px solid #4a00e0; /* Accent border */
}
/* Input field styles */
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider {
border-radius: 8px;
border: 2px solid #e2e8f0;
background-color: #f8fafc;
}
.gradio-textbox:focus, .gradio-dropdown:focus, .gradio-image:focus, .gradio-audio:focus, .gradio-file:focus, .gradio-slider:focus {
border-color: #8e2de2;
box-shadow: 0 0 0 3px rgba(142, 45, 226, 0.2);
}
/* Button styles */
/* Send Button: Sky Blue */
#submit-btn {
background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
color: white;
border: none;
border-radius: 8px;
padding: 10px 19px;
font-size: 1.1rem;
cursor: pointer;
transition: all 0.3s ease;
margin-left: auto;
margin-right: auto;
display: block;
margin-top: 10px;
}
#submit-btn:hover {
background: linear-gradient(135deg, #5b10f1 0%, #9f3ef3 100%); /* Slightly lighter */
box-shadow: 0 6px 8px rgba(74, 0, 224, 0.4);
}
#submit-btn:active {
transform: scale(0.95);
}
#clear-history {
background: linear-gradient(135deg, #e53e3e 0%, #f56565 100%); /* Red gradient */
color: white;
border: none;
border-radius: 8px;
padding: 10px 13px;
font-size: 1.1rem;
cursor: pointer;
transition: all 0.3s ease;
margin-top: 10px;
}
#clear-history:hover {
background: linear-gradient(135deg, #c53030 0%, #e53e3e 100%); /* Slightly darker red gradient on hover */
box-shadow: 0 6px 8px rgba(229, 62, 62, 0.4);
}
#clear-history:active {
transform: scale(0.95);
}
/* Input type selector buttons */
#input-type-group {
display: flex;
justify-content: center;
gap: 10px;
margin-bottom: 20px;
}
.input-type-btn {
background-color: #718096; /* Slate gray */
color: white;
border: none;
border-radius: 8px;
padding: 10px 15px;
font-size: 1rem;
cursor: pointer;
transition: all 0.3s ease;
}
.input-type-btn.selected {
background-color: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
}
.input-type-btn:hover {
background-color: #4a5568; /* Darker slate */
}
/* Chat history styles */
.gradio-chatbot .message {
margin-bottom: 10px;
}
.gradio-chatbot .user {
background-color: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
color: white;
padding: 10px;
border-radius: 12px;
max-width: 70%;
animation: slideInUser 0.5s ease-out;
}
.gradio-chatbot .assistant {
background-color: #f0f4f8; /* Light blue-gray */
color: #2d3748;
padding: 10px;
border-radius: 12px;
max-width: 70%;
margin-left: auto;
animation: slideInAssistant 0.5s ease-out;
}
/* Animation keyframes */
@keyframes fadeIn {
0% { opacity: 0; }
100% { opacity: 1; }
}
@keyframes slideInUser {
0% { transform: translateX(-100%); }
100% { transform: translateX(0); }
}
@keyframes slideInAssistant {
0% { transform: translateX(100%); }
100% { transform: translateX(0); }
}
/* Mobile responsiveness */
@media (max-width: 768px) {
.gradio-header h1 {
font-size: 1.8rem;
}
.gradio-header h3 {
font-size: 1rem;
}
.gradio-chatbot {
max-height: 400px;
}
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider {
width: 100%;
}
#submit-btn, #clear-history {
width: 100%;
margin-left: 0;
}
}
"""
# Gradio interface setup
def create_interface():
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
<div class="gradio-header">
<h1>Multimodal Chatbot (Text + Image + Voice + PDF + Quiz)</h1>
<h3>Interact with a chatbot using text, image, voice, or PDF inputs</h3>
</div>
""")
# Add a description with an expandable accordion
with gr.Accordion("Click to expand for details", open=False):
gr.Markdown("""
### Description:
This is a multimodal chatbot that can handle text, image, voice, PDF inputs, and generate quizzes from PDFs.
- You can ask questions or provide text, and the assistant will respond.
- You can upload an image, and the assistant will process it and answer questions about the image.
- Voice input is supported: You can upload or record an audio file, and it will be transcribed to text and sent to the assistant.
- PDF support: Upload a PDF and ask questions about its content.
- PDF Quiz: Upload a PDF and specify how many MCQ questions you want generated based on the content.
- Enter your OpenAI API key to start interacting with the model.
- You can use the 'Clear History' button to remove the conversation history.
- "o1" is for image, voice, PDF and text chat and "o3-mini" is for text, PDF and voice chat only.
### Reasoning Effort:
The reasoning effort controls how complex or detailed the assistant's answers should be.
- **Low**: Provides quick, concise answers with minimal reasoning or details.
- **Medium**: Offers a balanced response with a reasonable level of detail and thought.
- **High**: Produces more detailed, analytical, or thoughtful responses, requiring deeper reasoning.
""")
# Store PDF content as a state variable
pdf_content = gr.State("")
with gr.Row():
openai_api_key = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="sk-...", interactive=True)
# Input type selector
with gr.Row():
input_type = gr.Radio(
["Text", "Image", "Voice", "PDF", "PDF(QUIZ)"],
label="Choose Input Type",
value="Text"
)
# Create the input components (initially text is visible, others are hidden)
with gr.Row():
# Text input
input_text = gr.Textbox(
label="Enter Text Question",
placeholder="Ask a question or provide text",
lines=2,
visible=True
)
# Image input
image_input = gr.Image(
label="Upload an Image",
type="pil",
visible=False
)
# Audio input
audio_input = gr.Audio(
label="Upload or Record Audio",
type="filepath",
visible=False
)
# PDF input
pdf_input = gr.File(
label="Upload your PDF",
file_types=[".pdf"],
visible=False
)
# Quiz specific components
quiz_questions_slider = gr.Slider(
minimum=1,
maximum=20,
value=5,
step=1,
label="Number of Quiz Questions",
visible=False
)
# Hidden state for quiz mode
quiz_mode = gr.Checkbox(
label="Quiz Mode",
visible=False,
value=False
)
with gr.Row():
reasoning_effort = gr.Dropdown(
label="Reasoning Effort",
choices=["low", "medium", "high"],
value="medium"
)
model_choice = gr.Dropdown(
label="Select Model",
choices=["o1", "o3-mini"],
value="o1" # Default to 'o1' for image-related tasks
)
submit_btn = gr.Button("Ask!", elem_id="submit-btn")
clear_btn = gr.Button("Clear History", elem_id="clear-history")
chat_history = gr.Chatbot()
# Connect the input type selector to the update function
input_type.change(
fn=update_input_type,
inputs=[input_type],
outputs=[input_text, image_input, audio_input, pdf_input, quiz_questions_slider, quiz_mode]
)
# Process PDF when uploaded
pdf_input.change(
fn=process_pdf,
inputs=[pdf_input],
outputs=[pdf_content]
)
# Button interactions
submit_btn.click(
fn=chatbot,
inputs=[
input_text,
image_input,
audio_input,
pdf_input,
openai_api_key,
reasoning_effort,
model_choice,
pdf_content,
quiz_questions_slider,
quiz_mode,
chat_history
],
outputs=[
input_text,
image_input,
audio_input,
pdf_input,
pdf_content,
chat_history
]
)
clear_btn.click(
fn=clear_history,
inputs=[],
outputs=[input_text, image_input, audio_input, pdf_input, pdf_content, chat_history]
)
return demo
# Run the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch() |