Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import openai
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
|
7 |
+
# Function to send the request to OpenAI API
|
8 |
+
def generate_response(prompt, openai_api_key, image_info="", reasoning_effort="medium"):
|
9 |
+
if not openai_api_key:
|
10 |
+
return "Error: No API key provided."
|
11 |
+
|
12 |
+
openai.api_key = openai_api_key
|
13 |
+
|
14 |
+
# Combine text prompt with optional image info
|
15 |
+
full_prompt = prompt
|
16 |
+
if image_info:
|
17 |
+
full_prompt += f"\n\nAdditional context about the image: {image_info}"
|
18 |
+
|
19 |
+
try:
|
20 |
+
# Call OpenAI API with the specified model ("o1")
|
21 |
+
response = openai.ChatCompletion.create(
|
22 |
+
model="o1", # use model "o1"
|
23 |
+
messages=[
|
24 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
25 |
+
{"role": "user", "content": full_prompt},
|
26 |
+
],
|
27 |
+
temperature=0.7,
|
28 |
+
max_tokens=300,
|
29 |
+
reasoning_effort=reasoning_effort # Include reasoning_effort in the request
|
30 |
+
)
|
31 |
+
return response["choices"][0]["message"]["content"]
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error calling OpenAI API: {str(e)}"
|
34 |
+
|
35 |
+
# Function to convert an uploaded image to a base64 string
|
36 |
+
def get_base64_string_from_image(pil_image):
|
37 |
+
buffered = io.BytesIO()
|
38 |
+
pil_image.save(buffered, format="PNG")
|
39 |
+
img_bytes = buffered.getvalue()
|
40 |
+
base64_str = base64.b64encode(img_bytes).decode("utf-8")
|
41 |
+
return base64_str
|
42 |
+
|
43 |
+
# The function that will be used by Gradio interface
|
44 |
+
def chatbot(input_text, image, openai_api_key, reasoning_effort, history=[]):
|
45 |
+
image_info = ""
|
46 |
+
|
47 |
+
# If an image is uploaded, convert it to base64 for reference
|
48 |
+
if image:
|
49 |
+
try:
|
50 |
+
image = Image.open(image)
|
51 |
+
image_info = get_base64_string_from_image(image)
|
52 |
+
except Exception as e:
|
53 |
+
image_info = f"Error reading image: {e}"
|
54 |
+
|
55 |
+
# Combine user input with image info (if any)
|
56 |
+
response = generate_response(input_text, openai_api_key, image_info, reasoning_effort)
|
57 |
+
|
58 |
+
# Append the response to the history
|
59 |
+
history.append((f"User: {input_text}", f"Assistant: {response}"))
|
60 |
+
|
61 |
+
return "", history
|
62 |
+
|
63 |
+
# Function to clear the chat history
|
64 |
+
def clear_history():
|
65 |
+
return "", []
|
66 |
+
|
67 |
+
# Gradio interface setup
|
68 |
+
def create_interface():
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("# Multimodal Chatbot (Text + Image)")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
openai_api_key = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="sk-...", interactive=True)
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
image_input = gr.Image(label="Upload an Image", type="pil")
|
77 |
+
input_text = gr.Textbox(label="Enter Text Question", placeholder="Ask a question or provide text", lines=2)
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
reasoning_effort = gr.Dropdown(
|
81 |
+
label="Reasoning Effort",
|
82 |
+
choices=["low", "medium", "high"],
|
83 |
+
value="medium",
|
84 |
+
description="Select the reasoning effort for generating the response."
|
85 |
+
)
|
86 |
+
submit_btn = gr.Button("Send")
|
87 |
+
clear_btn = gr.Button("Clear History")
|
88 |
+
|
89 |
+
chat_history = gr.Chatbot()
|
90 |
+
|
91 |
+
# Button interactions
|
92 |
+
submit_btn.click(fn=chatbot, inputs=[input_text, image_input, openai_api_key, reasoning_effort, chat_history], outputs=[input_text, chat_history])
|
93 |
+
clear_btn.click(fn=clear_history, inputs=[], outputs=[chat_history, chat_history])
|
94 |
+
|
95 |
+
return demo
|
96 |
+
|
97 |
+
# Run the interface
|
98 |
+
if __name__ == "__main__":
|
99 |
+
demo = create_interface()
|
100 |
+
demo.launch()
|