File size: 22,924 Bytes
eaa4360 5016e38 e555f36 1b21a19 238e053 0d11d75 eaa4360 238e053 eaa4360 238e053 5016e38 238e053 5016e38 e555f36 238e053 7f12ed4 238e053 7f12ed4 238e053 7f12ed4 e555f36 238e053 e555f36 eaa4360 b1a1b1c eaa4360 238e053 5016e38 238e053 eaa4360 5016e38 eaa4360 5b332f1 eaa4360 c4ff6ca 272a0b4 c4ff6ca 272a0b4 0ce5160 272a0b4 c4ff6ca 0d11d75 ea2202e 0d11d75 eaa4360 0d11d75 c4ff6ca bd42163 c4ff6ca 238e053 0d11d75 238e053 0d11d75 bd42163 eaa4360 238e053 0d11d75 238e053 eaa4360 0d11d75 eaa4360 0d11d75 eaa4360 0d11d75 238e053 0d11d75 eaa4360 6ad9d96 0d11d75 6ad9d96 0d11d75 6ad9d96 0d11d75 238e053 0d11d75 6ad9d96 5c92c98 3e5c357 238e053 3e5c357 238e053 3e5c357 5c92c98 3e5c357 e327d09 74e0dd8 477f138 e327d09 ea7518b a7e7cfd 3e5c357 5c92c98 3e5c357 5c92c98 3e5c357 5c92c98 9b5c32b 5c92c98 5200bd8 5c92c98 ea7518b 5c92c98 9b5c32b 5c92c98 6ad9d96 3e5c357 0d11d75 3e5c357 0d11d75 ea7518b 238e053 ea7518b 0d11d75 ea7518b 3e5c357 e555f36 eaa4360 3e5c357 bd42163 0d11d75 bd42163 35d1afd bd42163 0d11d75 bd42163 35d1afd 238e053 0d11d75 238e053 35d1afd 2f56112 6ad9d96 bd42163 6ad9d96 238e053 6ad9d96 238e053 0d11d75 238e053 0d11d75 35d1afd 0d11d75 35d1afd 3e5c357 0d11d75 13a5c1f 6ad9d96 0d11d75 238e053 0d11d75 238e053 0d11d75 6ad9d96 35d1afd 6ad9d96 0d11d75 ea2202e 0d11d75 6ad9d96 0d11d75 6ad9d96 0d11d75 6ad9d96 eaa4360 35d1afd eaa4360 e555f36 eaa4360 e555f36 bd42163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import gradio as gr
import openai
import base64
from PIL import Image
import io
import os
import tempfile
import fitz # PyMuPDF for PDF handling
import uuid
import json
# Class to manage document storage
class DocumentManager:
def __init__(self):
self.documents = {} # Dictionary to store documents: {doc_id: {"name": name, "content": content, "path": path}}
def add_document(self, file_path, file_name=None):
"""Add a document to the manager and return its ID"""
if file_name is None:
file_name = os.path.basename(file_path)
doc_id = str(uuid.uuid4())
content = extract_text_from_pdf(file_path)
self.documents[doc_id] = {
"name": file_name,
"content": content,
"path": file_path
}
return doc_id
def get_document_content(self, doc_id):
"""Get the content of a document by its ID"""
if doc_id in self.documents:
return self.documents[doc_id]["content"]
return ""
def get_document_path(self, doc_id):
"""Get the file path of a document by its ID"""
if doc_id in self.documents:
return self.documents[doc_id]["path"]
return None
def get_document_list(self):
"""Get a list of document names and IDs for dropdown"""
return [(self.documents[doc_id]["name"], doc_id) for doc_id in self.documents]
def clear_documents(self):
"""Clear all documents"""
self.documents = {}
return []
# Initialize the document manager
document_manager = DocumentManager()
# Function to extract text from PDF files
def extract_text_from_pdf(pdf_file):
try:
text = ""
pdf_document = fitz.open(pdf_file)
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
text += page.get_text()
pdf_document.close()
return text
except Exception as e:
return f"Error extracting text from PDF: {str(e)}"
# Function to send the request to OpenAI API with an image, text or PDF input
def generate_response(input_text, image, pdf_content, openai_api_key, reasoning_effort="medium", model_choice="o1"):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
# Process the input depending on whether it's text, image, or a PDF-related query
if pdf_content and input_text:
# For PDF queries, we combine the PDF content with the user's question
prompt = f"Based on the following document content, please answer this question: '{input_text}'\n\nDocument content:\n{pdf_content}"
input_content = prompt
elif image:
# Convert the image to base64 string
image_info = get_base64_string_from_image(image)
input_content = f"data:image/png;base64,{image_info}"
else:
# Plain text input
input_content = input_text
# Prepare the messages for OpenAI API
if model_choice == "o1":
if image and not pdf_content:
messages = [
{"role": "user", "content": [{"type": "image_url", "image_url": {"url": input_content}}]}
]
else:
messages = [
{"role": "user", "content": [{"type": "text", "text": input_content}]}
]
elif model_choice == "o3-mini":
messages = [
{"role": "user", "content": [{"type": "text", "text": input_content}]}
]
try:
# Call OpenAI API with the selected model
response = openai.ChatCompletion.create(
model=model_choice,
messages=messages,
reasoning_effort=reasoning_effort,
max_completion_tokens=2000
)
return response["choices"][0]["message"]["content"]
except Exception as e:
return f"Error calling OpenAI API: {str(e)}"
# Function to convert an uploaded image to a base64 string
def get_base64_string_from_image(pil_image):
# Convert PIL Image to bytes
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
base64_str = base64.b64encode(img_bytes).decode("utf-8")
return base64_str
# Function to transcribe audio to text using OpenAI Whisper API
def transcribe_audio(audio, openai_api_key):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
try:
# Open the audio file and pass it as a file object
with open(audio, 'rb') as audio_file:
audio_file_content = audio_file.read()
# Use the correct transcription API call
audio_file_obj = io.BytesIO(audio_file_content)
audio_file_obj.name = 'audio.wav' # Set a name for the file object (as OpenAI expects it)
# Transcribe the audio to text using OpenAI's whisper model
audio_file_transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1")
return audio_file_transcription['text']
except Exception as e:
return f"Error transcribing audio: {str(e)}"
# Function to handle PDF uploads
def handle_pdf_upload(pdf_file):
if pdf_file is None:
return [], None
# Add the PDF to the document manager
doc_id = document_manager.add_document(pdf_file.name)
# Return updated dropdown list and the selected document ID
doc_list = document_manager.get_document_list()
# Only set the value if the list is not empty
selected_value = doc_id if doc_list else None
return doc_list, selected_value
# Function to get PDF content based on selected document
def get_selected_document_content(doc_id):
if not doc_id:
return "", None
# Get the document path for the PDF viewer
doc_path = document_manager.get_document_path(doc_id)
# Return the document content for the AI and the path for the viewer
return document_manager.get_document_content(doc_id), doc_path
# The function that will be used by Gradio interface
def chatbot(input_text, image, audio, pdf_file, doc_selection, openai_api_key, reasoning_effort, model_choice, current_pdf_content, history=[]):
# If there's audio, transcribe it to text
if audio:
input_text = transcribe_audio(audio, openai_api_key)
# Determine which PDF content to use
pdf_content_to_use = current_pdf_content
# Generate the response
response = generate_response(input_text, image, pdf_content_to_use, openai_api_key, reasoning_effort, model_choice)
# Append the response to the history
if input_text:
if doc_selection:
# Include the document name in the history
doc_name = next((doc[0] for doc in document_manager.get_document_list() if doc[1] == doc_selection), "Unknown Document")
history.append((f"User: {input_text} [Query on: {doc_name}]", f"Assistant: {response}"))
else:
history.append((f"User: {input_text}", f"Assistant: {response}"))
else:
history.append((f"User: [Uploaded content]", f"Assistant: {response}"))
return "", None, None, None, doc_selection, current_pdf_content, history
# Function to clear the chat history and reset selected document
def clear_history():
return "", None, None, None, None, "", []
# Function to clear all documents
def clear_documents():
document_list = document_manager.clear_documents()
return document_list, None, "", None
# Function to update visible components based on input type selection
def update_input_type(choice):
if choice == "Text":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif choice == "Image":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif choice == "Voice":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif choice == "PDF":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
# Custom CSS styles with animations and button colors
custom_css = """
/* General body styles */
.gradio-container {
font-family: 'Arial', sans-serif;
background-color: #f8f9fa;
color: #333;
}
/* Header styles */
.gradio-header {
background-color: #007bff;
color: white;
padding: 20px;
text-align: center;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
animation: fadeIn 1s ease-out;
}
.gradio-header h1 {
font-size: 2.5rem;
}
.gradio-header h3 {
font-size: 1.2rem;
margin-top: 10px;
}
/* Chatbot container styles */
.gradio-chatbot {
background-color: #fff;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
max-height: 500px;
overflow-y: auto;
animation: fadeIn 2s ease-out;
}
/* Input field styles */
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file {
border-radius: 8px;
border: 2px solid #ccc;
padding: 10px;
margin-bottom: 10px;
width: 100%;
font-size: 1rem;
transition: all 0.3s ease;
}
.gradio-textbox:focus, .gradio-dropdown:focus, .gradio-image:focus, .gradio-audio:focus, .gradio-file:focus {
border-color: #007bff;
}
/* Button styles */
/* Send Button: Sky Blue */
#submit-btn {
background-color: #00aaff; /* Sky blue */
color: white;
border: none;
border-radius: 8px;
padding: 10px 19px;
font-size: 1.1rem;
cursor: pointer;
transition: all 0.3s ease;
margin-left: auto;
margin-right: auto;
display: block;
margin-top: 10px;
}
#submit-btn:hover {
background-color: #0099cc; /* Slightly darker blue */
}
#submit-btn:active {
transform: scale(0.95);
}
#clear-history {
background-color: #f04e4e; /* Slightly Darker red */
color: white;
border: none;
border-radius: 8px;
padding: 10px 13px;
font-size: 1.1rem;
cursor: pointer;
transition: all 0.3s ease;
margin-top: 10px;
}
#clear-history:hover {
background-color: #f5a4a4; /* Light red */
}
#clear-history:active {
transform: scale(0.95);
}
/* Input type selector buttons */
#input-type-group {
display: flex;
justify-content: center;
gap: 10px;
margin-bottom: 20px;
}
.input-type-btn {
background-color: #6c757d;
color: white;
border: none;
border-radius: 8px;
padding: 10px 15px;
font-size: 1rem;
cursor: pointer;
transition: all 0.3s ease;
}
.input-type-btn.selected {
background-color: #007bff;
}
.input-type-btn:hover {
background-color: #5a6268;
}
/* Chat history styles */
.gradio-chatbot .message {
margin-bottom: 10px;
}
.gradio-chatbot .user {
background-color: #007bff;
color: white;
padding: 10px;
border-radius: 12px;
max-width: 70%;
animation: slideInUser 0.5s ease-out;
}
.gradio-chatbot .assistant {
background-color: #f1f1f1;
color: #333;
padding: 10px;
border-radius: 12px;
max-width: 70%;
margin-left: auto;
animation: slideInAssistant 0.5s ease-out;
}
/* PDF preview panel */
.pdf-preview-panel {
border: 2px solid #ccc;
border-radius: 8px;
overflow: hidden;
height: 600px;
background-color: #f5f5f5;
}
/* PDF viewer iframe */
.pdf-viewer {
width: 100%;
height: 100%;
border: none;
}
/* Split view container */
.split-view-container {
display: flex;
gap: 20px;
}
.split-view-panel {
flex: 1;
min-width: 0; /* Allow panels to shrink below their content size */
}
/* Animation keyframes */
@keyframes fadeIn {
0% { opacity: 0; }
100% { opacity: 1; }
}
@keyframes slideInUser {
0% { transform: translateX(-100%); }
100% { transform: translateX(0); }
}
@keyframes slideInAssistant {
0% { transform: translateX(100%); }
100% { transform: translateX(0); }
}
/* Document management styles */
.document-manager {
background-color: #fff;
border-radius: 10px;
padding: 15px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
.document-manager-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 15px;
}
.document-list {
max-height: 200px;
overflow-y: auto;
border: 1px solid #eee;
border-radius: 5px;
padding: 10px;
}
/* Mobile responsiveness */
@media (max-width: 768px) {
.gradio-header h1 {
font-size: 1.8rem;
}
.gradio-header h3 {
font-size: 1rem;
}
.gradio-chatbot {
max-height: 400px;
}
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file {
width: 100%;
}
#submit-btn, #clear-history {
width: 100%;
margin-left: 0;
}
.split-view-container {
flex-direction: column;
}
}
"""
# Gradio interface setup
def create_interface():
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
<div class="gradio-header">
<h1>Enhanced Multimodal Chatbot</h1>
<h3>Interact with text, images, voice, and multiple PDFs</h3>
</div>
""")
# Add a description with an expandable accordion
with gr.Accordion("Click to expand for details", open=False):
gr.Markdown("""
### Description:
This enhanced multimodal chatbot handles text, image, voice, and PDF inputs with advanced document management.
- **Text Mode**: Ask questions or provide text for the assistant to respond.
- **Image Mode**: Upload an image for the assistant to analyze and discuss.
- **Voice Mode**: Upload or record audio that will be transcribed and processed.
- **PDF Mode**: Upload multiple PDFs, select which one to query, and view them side-by-side with the chat.
### PDF Features:
- Upload and manage multiple PDFs in a single session
- Select which document to query from a dropdown menu
- View PDFs side-by-side with the chat interface
- Clear document library as needed
### Model Options:
- "o1" is for image, voice, PDF and text chat
- "o3-mini" is for text, PDF and voice chat only
""")
# Store PDF content as a state variable
current_pdf_content = gr.State("")
with gr.Row():
openai_api_key = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="sk-...", interactive=True)
# Input type selector
with gr.Row():
input_type = gr.Radio(
["Text", "Image", "Voice", "PDF"],
label="Choose Input Type",
value="Text"
)
# Create the input components (initially text is visible, others are hidden)
with gr.Row():
# Text input
input_text = gr.Textbox(
label="Enter Text Question",
placeholder="Ask a question or provide text",
lines=2,
visible=True
)
# Image input
image_input = gr.Image(
label="Upload an Image",
type="pil",
visible=False
)
# Audio input
audio_input = gr.Audio(
label="Upload or Record Audio",
type="filepath",
visible=False
)
# PDF input and document selection components
pdf_input = gr.File(
label="Upload your PDF",
file_types=[".pdf"],
visible=False
)
# Dropdown for document selection
doc_selection = gr.Dropdown(
label="Select Document to Query",
choices=[],
interactive=True,
visible=False
)
# PDF Viewer (initially hidden)
pdf_viewer = gr.HTML(
label="PDF Preview",
visible=False
)
# Action buttons row
with gr.Row():
with gr.Column(scale=1):
reasoning_effort = gr.Dropdown(
label="Reasoning Effort",
choices=["low", "medium", "high"],
value="medium"
)
with gr.Column(scale=1):
model_choice = gr.Dropdown(
label="Select Model",
choices=["o1", "o3-mini"],
value="o1"
)
with gr.Column(scale=1):
submit_btn = gr.Button("Ask!", elem_id="submit-btn")
with gr.Column(scale=1):
clear_chat_btn = gr.Button("Clear Chat", elem_id="clear-history")
with gr.Column(scale=1, visible=False) as clear_docs_col:
clear_docs_btn = gr.Button("Clear All Documents", elem_id="clear-docs")
# Create a container for the split view layout when in PDF mode
with gr.Row(visible=False) as split_view_container:
with gr.Column(scale=1, elem_classes="split-view-panel") as pdf_panel:
pdf_display = gr.HTML(
"""<div class="pdf-preview-panel">
<iframe class="pdf-viewer" id="pdf-viewer" src="about:blank"></iframe>
</div>"""
)
with gr.Column(scale=1, elem_classes="split-view-panel") as chat_panel:
chat_history = gr.Chatbot()
# Regular chat history display (when not in split view)
with gr.Row(visible=True) as regular_chat_container:
chat_history_regular = gr.Chatbot()
# Function to handle selection of a document from dropdown
def handle_doc_selection(doc_id):
if not doc_id:
return "", update_pdf_viewer(None)
content, path = get_selected_document_content(doc_id)
return content, update_pdf_viewer(path)
# Function to update the PDF viewer
def update_pdf_viewer(pdf_path):
if not pdf_path:
return """<div class="pdf-preview-panel">
<div style="padding: 20px; text-align: center;">No PDF selected</div>
</div>"""
# Create a data URL or temporary file path to display the PDF
return f"""<div class="pdf-preview-panel">
<iframe class="pdf-viewer" id="pdf-viewer" src="file={pdf_path}" type="application/pdf"></iframe>
</div>"""
# Function to toggle between split view and regular view based on input type
def toggle_view(choice):
if choice == "PDF":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
# Connect the input type selector to the update function
input_type.change(
fn=update_input_type,
inputs=[input_type],
outputs=[input_text, image_input, audio_input, pdf_input, doc_selection, pdf_viewer]
)
# Toggle between split view and regular view when input type changes
input_type.change(
fn=toggle_view,
inputs=[input_type],
outputs=[split_view_container, regular_chat_container, clear_docs_col]
)
# Process PDF when uploaded
pdf_input.change(
fn=handle_pdf_upload,
inputs=[pdf_input],
outputs=[doc_selection, doc_selection]
)
# Update content when document is selected
doc_selection.change(
fn=handle_doc_selection,
inputs=[doc_selection],
outputs=[current_pdf_content, pdf_display]
)
# Button interactions
submit_btn.click(
fn=chatbot,
inputs=[
input_text, image_input, audio_input, pdf_input,
doc_selection, openai_api_key, reasoning_effort,
model_choice, current_pdf_content, chat_history_regular # Added chat_history_regular to avoid creating new empty list
],
outputs=[
input_text, image_input, audio_input, pdf_input,
doc_selection, current_pdf_content, chat_history_regular
]
)
# Also update the split view chat history when submitting
submit_btn.click(
fn=lambda history: history,
inputs=[chat_history_regular],
outputs=[chat_history]
)
clear_chat_btn.click(
fn=clear_history,
inputs=[],
outputs=[input_text, image_input, audio_input, pdf_input, doc_selection, current_pdf_content, chat_history_regular]
)
# Also clear the split view chat history
clear_chat_btn.click(
fn=lambda: [],
inputs=[],
outputs=[chat_history]
)
# Clear all documents
clear_docs_btn.click(
fn=clear_documents,
inputs=[],
outputs=[doc_selection, doc_selection, current_pdf_content, pdf_display]
)
return demo
# Run the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch() |