File size: 9,629 Bytes
eaa4360
 
5016e38
14868b1
1b21a19
14868b1
 
 
 
 
eaa4360
5016e38
b1a1b1c
eaa4360
 
 
 
 
f847fb0
5016e38
 
 
 
 
f847fb0
 
 
 
 
1b21a19
f847fb0
1b21a19
f847fb0
 
eaa4360
b1a1b1c
eaa4360
b1a1b1c
5016e38
f847fb0
eaa4360
5016e38
eaa4360
 
 
 
 
 
5b332f1
eaa4360
 
 
 
 
 
 
1b21a19
 
 
 
 
b1a1b1c
eaa4360
 
 
 
 
 
 
 
 
 
5c92c98
3e5c357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c92c98
 
 
3e5c357
 
e327d09
74e0dd8
477f138
e327d09
 
ea7518b
 
 
a7e7cfd
3e5c357
5c92c98
 
3e5c357
5c92c98
3e5c357
 
5c92c98
9b5c32b
5c92c98
 
 
5200bd8
5c92c98
 
 
ea7518b
5c92c98
 
9b5c32b
5c92c98
 
 
 
3e5c357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7518b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5c357
 
133de89
eaa4360
3e5c357
eb511aa
3e5c357
133de89
 
3e5c357
eb511aa
8995760
 
 
 
 
133de89
8995760
133de89
 
8995760
 
 
 
 
 
 
 
 
eb511aa
eaa4360
 
3e5c357
eaa4360
5cb63f8
eaa4360
3e5c357
eaa4360
 
 
 
ca49816
eaa4360
b1a1b1c
 
 
e256ddd
b1a1b1c
133de89
 
 
 
 
 
 
eaa4360
 
 
 
1b21a19
eaa4360
 
 
 
 
14868b1
f847fb0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gradio as gr
import openai
import base64
import os
import io
from helpers import text_to_speech, autoplay_audio, speech_to_text, get_api_key
from generate_answer import base_model_chatbot, with_pdf_chatbot
from audio_recorder_streamlit import audio_recorder
from streamlit_float import *
from PIL import Image as stImage

# Function to send the request to OpenAI API with an image or text input
def generate_response(input_text, image, openai_api_key, reasoning_effort="medium", model_choice="o1"):
    if not openai_api_key:
        return "Error: No API key provided."

    openai.api_key = openai_api_key

    # If the user uploaded an image, convert it to base64 and use it for API call
    if image:
        # Convert the image to base64 string
        image_info = get_base64_string_from_image(image)
        input_text = f"data:image/png;base64,{image_info}"

    # Check for text input and pass to API
    if not input_text:
        return "Error: Please provide either text, image, or voice input."

    # Prepare the messages for OpenAI API based on the selected model
    if model_choice == "o1" and input_text:
        messages = [{"role": "user", "content": input_text}]
    elif model_choice == "o3-mini" and input_text:
        messages = [{"role": "user", "content": input_text}]

    try:
        # Call OpenAI API with the selected model
        response = openai.ChatCompletion.create(
            model=model_choice,  # Dynamically choose the model (o1 or o3-mini)
            messages=messages,
            max_tokens=2000  # Limit response tokens to 2000
        )

        return response["choices"][0]["message"]["content"]
    except Exception as e:
        return f"Error calling OpenAI API: {str(e)}"

# Function to convert an uploaded image to a base64 string
def get_base64_string_from_image(pil_image):
    # Convert PIL Image to bytes
    buffered = io.BytesIO()
    pil_image.save(buffered, format="PNG")
    img_bytes = buffered.getvalue()
    base64_str = base64.b64encode(img_bytes).decode("utf-8")
    return base64_str

# The function that will be used by Gradio interface
def chatbot(input_text, image, voice_audio, openai_api_key, reasoning_effort, model_choice, history=[]):
    # If voice_audio is provided, convert it to text
    if voice_audio:
        input_text = speech_to_text(voice_audio)  # Convert speech to text
    
    response = generate_response(input_text, image, openai_api_key, reasoning_effort, model_choice)
    
    # Append the response to the history
    history.append((f"User: {input_text}", f"Assistant: {response}"))
    
    return "", history

# Function to clear the chat history
def clear_history():
    return "", []

# Custom CSS styles with animations and button colors
custom_css = """
    /* General body styles */
    .gradio-container {
        font-family: 'Arial', sans-serif;
        background-color: #f8f9fa;
        color: #333;
    }
    /* Header styles */
    .gradio-header {
        background-color: #007bff;
        color: white;
        padding: 20px;
        text-align: center;
        border-radius: 8px;
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
        animation: fadeIn 1s ease-out;
    }
    .gradio-header h1 {
        font-size: 2.5rem;
    }
    .gradio-header h3 {
        font-size: 1.2rem;
        margin-top: 10px;
    }
    /* Chatbot container styles */
    .gradio-chatbot {
        background-color: #fff;
        border-radius: 10px;
        padding: 20px;
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
        max-height: 500px;
        overflow-y: auto;
        animation: fadeIn 2s ease-out;
    }
    /* Input field styles */
    .gradio-textbox, .gradio-dropdown, .gradio-image {
        border-radius: 8px;
        border: 2px solid #ccc;
        padding: 10px;
        margin-bottom: 10px;
        width: 100%;
        font-size: 1rem;
        transition: all 0.3s ease;
    }
    .gradio-textbox:focus, .gradio-dropdown:focus, .gradio-image:focus {
        border-color: #007bff;
    }
    /* Button styles */
    /* Send Button: Sky Blue */
    #submit-btn {
        background-color: #00aaff; /* Sky blue */
        color: white;
        border: none;
        border-radius: 8px;
        padding: 10px 19px;
        font-size: 1.1rem;
        cursor: pointer;
        transition: all 0.3s ease;
        margin-left: auto;
        margin-right: auto;
        display: block;
        margin-top: 10px;
    }
    #submit-btn:hover {
        background-color: #0099cc; /* Slightly darker blue */
    }
    #submit-btn:active {
        transform: scale(0.95);
    }
    #clear-history {
        background-color: #f04e4e; /* Slightly Darker red */
        color: white;
        border: none;
        border-radius: 8px;
        padding: 10px 13px;
        font-size: 1.1rem;
        cursor: pointer;
        transition: all 0.3s ease;
        margin-top: 10px;
    }
    #clear-history:hover {
        background-color: #f5a4a4; /* Light red */
    }
    #clear-history:active {
        transform: scale(0.95);
    }
    /* Chat history styles */
    .gradio-chatbot .message {
        margin-bottom: 10px;
    }
    .gradio-chatbot .user {
        background-color: #007bff;
        color: white;
        padding: 10px;
        border-radius: 12px;
        max-width: 70%;
        animation: slideInUser 0.5s ease-out;
    }
    .gradio-chatbot .assistant {
        background-color: #f1f1f1;
        color: #333;
        padding: 10px;
        border-radius: 12px;
        max-width: 70%;
        margin-left: auto;
        animation: slideInAssistant 0.5s ease-out;
    }
    /* Animation keyframes */
    @keyframes fadeIn {
        0% { opacity: 0; }
        100% { opacity: 1; }
    }
    @keyframes slideInUser {
        0% { transform: translateX(-100%); }
        100% { transform: translateX(0); }
    }
    @keyframes slideInAssistant {
        0% { transform: translateX(100%); }
        100% { transform: translateX(0); }
    }
    /* Mobile responsiveness */
    @media (max-width: 768px) {
        .gradio-header h1 {
            font-size: 1.8rem;
        }
        .gradio-header h3 {
            font-size: 1rem;
        }
        .gradio-chatbot {
            max-height: 400px;
        }
        .gradio-textbox, .gradio-dropdown, .gradio-image {
            width: 100%;
        }
        #submit-btn, #clear-history {
            width: 100%;
            margin-left: 0;
        }
    }
"""

# Gradio interface setup for multimodal chatbot with voice functionality
def create_interface():
    with gr.Blocks(css=custom_css) as demo:
        gr.Markdown("""
            <div class="gradio-header">
                <h1>Multimodal Chatbot (Text + Image + Voice)</h1>
                <h3>Interact with a chatbot using text, image, or voice inputs</h3>
            </div>
        """)

        # Add a description with an expandable accordion
        with gr.Accordion("Click to expand for details", open=False):
            gr.Markdown("""
            ### Description:
            This is a multimodal chatbot that can handle text, image, and voice inputs. 
            - You can ask questions or provide text, and the assistant will respond.
            - You can upload an image, and the assistant will process it and answer questions about the image.
            - You can also speak to the assistant, and it will process your speech.
            - Enter your OpenAI API key to start interacting with the model.
            - You can use the 'Clear History' button to remove the conversation history.
            - "o1" is for image chat and "o3-mini" is for text chat.
            ### Reasoning Effort:
            The reasoning effort controls how complex or detailed the assistant's answers should be. 
            - **Low**: Provides quick, concise answers with minimal reasoning or details.
            - **Medium**: Offers a balanced response with a reasonable level of detail and thought.
            - **High**: Produces more detailed, analytical, or thoughtful responses, requiring deeper reasoning.
            """)

        with gr.Row():
            openai_api_key = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="sk-...", interactive=True)

        with gr.Row():
            image_input = gr.Image(label="Upload an Image", type="pil")  # Image upload input
            input_text = gr.Textbox(label="Enter Text Question", placeholder="Ask a question or provide text", lines=2)

        with gr.Row():
            reasoning_effort = gr.Dropdown(
                label="Reasoning Effort",
                choices=["low", "medium", "high"],
                value="medium"
            )
            model_choice = gr.Dropdown(
                label="Select Model",
                choices=["o1", "o3-mini"],
                value="o1"  # Default to 'o1' for image-related tasks
            )

        # Audio input (voice interaction)
        with gr.Row():
            voice_input = gr.Audio(label="Speak to the Assistant", type="filepath")

        submit_btn = gr.Button("Ask!", elem_id="submit-btn")
        clear_btn = gr.Button("Clear History", elem_id="clear-history")

        chat_history = gr.Chatbot()

        # Button interactions
        submit_btn.click(fn=chatbot, inputs=[input_text, image_input, voice_input, openai_api_key, reasoning_effort, model_choice, chat_history], outputs=[input_text, chat_history])
        clear_btn.click(fn=clear_history, inputs=[], outputs=[chat_history, chat_history])

    return demo

if __name__ == "__main__":
    demo = create_interface()  # Gradio multimodal chatbot
    demo.launch()