File size: 7,936 Bytes
e7339e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import spaces from kokoro import KModel, KPipeline import gradio as gr import os import random import torch IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/') CHAR_LIMIT = None if IS_DUPLICATE else 5000 CUDA_AVAILABLE = torch.cuda.is_available() models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'} pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO' pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ' @spaces.GPU(duration=10) def forward_gpu(ps, ref_s, speed): return models[True](ps, ref_s, speed) def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] pipeline = pipelines[voice[0]] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) return (24000, audio.numpy()), ps return None, '' # Arena API def predict(text, voice='af_heart', speed=1): return generate_first(text, voice, speed, use_gpu=False)[0] def tokenize_first(text, voice='af_heart'): # Split the input text into words and return as a list of words (fix applied here) words = text.split() # This splits the text into words based on spaces return words # Return a list of words def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] pipeline = pipelines[voice[0]] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Switching to CPU') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) yield 24000, audio.numpy() random_texts = {} for lang in ['en']: with open(f'{lang}.txt', 'r') as r: random_texts[lang] = [line.strip() for line in r] def get_random_text(voice): lang = dict(a='en', b='en')[voice[0]] return random.choice(random_texts[lang]) CHOICES = { '🇺🇸 🚺 Heart ❤️': 'af_heart', '🇺🇸 🚺 Bella 🔥': 'af_bella', '🇺🇸 🚺 Nicole 🎧': 'af_nicole', '🇺🇸 🚺 Aoede': 'af_aoede', '🇺🇸 🚺 Kore': 'af_kore', '🇺🇸 🚺 Sarah': 'af_sarah', '🇺🇸 🚺 Nova': 'af_nova', '🇺🇸 🚺 Sky': 'af_sky', '🇺🇸 🚺 Alloy': 'af_alloy', '🇺🇸 🚺 Jessica': 'af_jessica', '🇺🇸 🚺 River': 'af_river', '🇺🇸 🚹 Michael': 'am_michael', '🇺🇸 🚹 Fenrir': 'am_fenrir', '🇺🇸 🚹 Puck': 'am_puck', '🇺🇸 🚹 Echo': 'am_echo', '🇺🇸 🚹 Eric': 'am_eric', '🇺🇸 🚹 Liam': 'am_liam', '🇺🇸 🚹 Onyx': 'am_onyx', '🇺🇸 🚹 Santa': 'am_santa', '🇺🇸 🚹 Adam': 'am_adam', '🇬🇧 🚺 Emma': 'bf_emma', '🇬🇧 🚺 Isabella': 'bf_isabella', '🇬🇧 🚺 Alice': 'bf_alice', '🇬🇧 🚺 Lily': 'bf_lily', '🇬🇧 🚹 George': 'bm_george', '🇬🇧 🚹 Fable': 'bm_fable', '🇬🇧 🚹 Lewis': 'bm_lewis', '🇬🇧 🚹 Daniel': 'bm_daniel', '🇪🇸 🚺 Dora': 'ef_dora', '🇪🇸 🚹 Alex': 'em_alex', '🇪🇸 🚹 Santa': 'em_santa', '🇫🇷 🚺 Siwis': 'ff_siwis', '🇮🇳 🚹 Alpha': 'hf_alpha', '🇮🇳 🚹 Beta': 'hf_beta', '🇮🇳 🚹 Omega': 'hm_omega', '🇮🇳 🚹 Psi': 'hm_psi', '🇮🇹 🚺 Sara': 'if_sara', '🇮🇹 🚺 Nicola': 'im_nicola', '🇯🇵 🚹 Alpha': 'jf_alpha', '🇯🇵 🚹 Gongitsune': 'jf_gongitsune', '🇯🇵 🚹 Nezumi': 'jf_nezumi', '🇯🇵 🚹 Tebukuro': 'jf_tebukuro', '🇯🇵 🚹 Kumo': 'jm_kumo', '🇧🇷 🚺 Dora': 'pf_dora', '🇧🇷 🚹 Alex': 'pm_alex', '🇧🇷 🚹 Santa': 'pm_santa', '🇨🇳 🚺 Xiaobei': 'zf_xiaobei', '🇨🇳 🚺 Xiaoni': 'zf_xiaoni', '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao', '🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi', '🇨🇳 🚹 Yunjian': 'zm_yunjian', '🇨🇳 🚹 Yunxi': 'zm_yunxi', '🇨🇳 🚹 Yunxia': 'zm_yunxia', '🇨🇳 🚹 Yunyang': 'zm_yunyang', } for v in CHOICES.values(): pipelines[v[0]].load_voice(v) with gr.Blocks() as generate_tab: out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True) generate_btn = gr.Button('Generate', variant='primary') with gr.Accordion('Output Tokens', open=True): out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.') tokenize_btn = gr.Button('Tokenize', variant='secondary') predict_btn = gr.Button('Predict', variant='secondary', visible=False) BANNER_TEXT = ''' [***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M) As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face. This demo only showcases English, but you can directly use the model to access other languages. ''' API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS' API_NAME = None if API_OPEN else False with gr.Blocks() as app: with gr.Row(): gr.Markdown(BANNER_TEXT, container=True) with gr.Row(): with gr.Column(): text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream") with gr.Row(): voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language') use_gpu = gr.Dropdown( [('ZeroGPU 🚀', True), ('CPU 🐌', False)], value=CUDA_AVAILABLE, label='Hardware', info='GPU is usually faster, but has a usage quota', interactive=CUDA_AVAILABLE ) speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed') random_btn = gr.Button('Random Text', variant='secondary') with gr.Column(): gr.TabbedInterface([generate_tab], ['Generate']) random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME) generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME) tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME) predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME) if __name__ == '__main__': app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True) |