File size: 7,936 Bytes
e7339e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch

IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
CHAR_LIMIT = None if IS_DUPLICATE else 5000

CUDA_AVAILABLE = torch.cuda.is_available()
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'

@spaces.GPU(duration=10)
def forward_gpu(ps, ref_s, speed):
    return models[True](ps, ref_s, speed)

def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        return (24000, audio.numpy()), ps
    return None, ''

# Arena API
def predict(text, voice='af_heart', speed=1):
    return generate_first(text, voice, speed, use_gpu=False)[0]

def tokenize_first(text, voice='af_heart'):
    # Split the input text into words and return as a list of words (fix applied here)
    words = text.split()  # This splits the text into words based on spaces
    return words  # Return a list of words

def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Switching to CPU')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        yield 24000, audio.numpy()

random_texts = {}
for lang in ['en']:
    with open(f'{lang}.txt', 'r') as r:
        random_texts[lang] = [line.strip() for line in r]

def get_random_text(voice):
    lang = dict(a='en', b='en')[voice[0]]
    return random.choice(random_texts[lang])

CHOICES = {
'🇺🇸 🚺 Heart ❤️': 'af_heart',
'🇺🇸 🚺 Bella 🔥': 'af_bella',
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
'🇺🇸 🚺 Aoede': 'af_aoede',
'🇺🇸 🚺 Kore': 'af_kore',
'🇺🇸 🚺 Sarah': 'af_sarah',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 River': 'af_river',
    
'🇺🇸 🚹 Michael': 'am_michael',
'🇺🇸 🚹 Fenrir': 'am_fenrir',
'🇺🇸 🚹 Puck': 'am_puck',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇺🇸 🚹 Santa': 'am_santa',
'🇺🇸 🚹 Adam': 'am_adam',
    
'🇬🇧 🚺 Emma': 'bf_emma',
'🇬🇧 🚺 Isabella': 'bf_isabella',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
    
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇬🇧 🚹 Daniel': 'bm_daniel',
    
'🇪🇸 🚺 Dora': 'ef_dora',
    
'🇪🇸 🚹 Alex': 'em_alex',
'🇪🇸 🚹 Santa': 'em_santa',
    
'🇫🇷 🚺 Siwis': 'ff_siwis',
    
'🇮🇳 🚹 Alpha': 'hf_alpha',
'🇮🇳 🚹 Beta': 'hf_beta',
    
'🇮🇳 🚹 Omega': 'hm_omega',
'🇮🇳 🚹 Psi': 'hm_psi',
    
'🇮🇹 🚺 Sara': 'if_sara',
    
'🇮🇹 🚺 Nicola': 'im_nicola',
    
'🇯🇵 🚹 Alpha': 'jf_alpha',
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
    
'🇯🇵 🚹 Kumo': 'jm_kumo',
    
'🇧🇷 🚺 Dora': 'pf_dora',
    
'🇧🇷 🚹 Alex': 'pm_alex',
'🇧🇷 🚹 Santa': 'pm_santa',
    
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',

'🇨🇳 🚹 Yunjian': 'zm_yunjian',
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
}
for v in CHOICES.values():
    pipelines[v[0]].load_voice(v)

with gr.Blocks() as generate_tab:
    out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
    generate_btn = gr.Button('Generate', variant='primary')
    with gr.Accordion('Output Tokens', open=True):
        out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
        tokenize_btn = gr.Button('Tokenize', variant='secondary')
        predict_btn = gr.Button('Predict', variant='secondary', visible=False)

BANNER_TEXT = '''
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
This demo only showcases English, but you can directly use the model to access other languages.
'''

API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
API_NAME = None if API_OPEN else False
with gr.Blocks() as app:
    with gr.Row():
        gr.Markdown(BANNER_TEXT, container=True)
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
                use_gpu = gr.Dropdown(
                    [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
                    value=CUDA_AVAILABLE,
                    label='Hardware',
                    info='GPU is usually faster, but has a usage quota',
                    interactive=CUDA_AVAILABLE
                )
            speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
            random_btn = gr.Button('Random Text', variant='secondary')
        with gr.Column():
            gr.TabbedInterface([generate_tab], ['Generate'])
    random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
    generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
    tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
    predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)

if __name__ == '__main__':
    app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)