shukdevdatta123 commited on
Commit
e7339e4
·
verified ·
1 Parent(s): 9afcf62

Upload kokoro grad.txt

Browse files
Files changed (1) hide show
  1. kokoro grad.txt +198 -0
kokoro grad.txt ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from kokoro import KModel, KPipeline
3
+ import gradio as gr
4
+ import os
5
+ import random
6
+ import torch
7
+
8
+ IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
9
+ CHAR_LIMIT = None if IS_DUPLICATE else 5000
10
+
11
+ CUDA_AVAILABLE = torch.cuda.is_available()
12
+ models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
13
+ pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
14
+ pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
15
+ pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
16
+
17
+ @spaces.GPU(duration=10)
18
+ def forward_gpu(ps, ref_s, speed):
19
+ return models[True](ps, ref_s, speed)
20
+
21
+ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
22
+ text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
23
+ pipeline = pipelines[voice[0]]
24
+ pack = pipeline.load_voice(voice)
25
+ use_gpu = use_gpu and CUDA_AVAILABLE
26
+ for _, ps, _ in pipeline(text, voice, speed):
27
+ ref_s = pack[len(ps)-1]
28
+ try:
29
+ if use_gpu:
30
+ audio = forward_gpu(ps, ref_s, speed)
31
+ else:
32
+ audio = models[False](ps, ref_s, speed)
33
+ except gr.exceptions.Error as e:
34
+ if use_gpu:
35
+ gr.Warning(str(e))
36
+ gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
37
+ audio = models[False](ps, ref_s, speed)
38
+ else:
39
+ raise gr.Error(e)
40
+ return (24000, audio.numpy()), ps
41
+ return None, ''
42
+
43
+ # Arena API
44
+ def predict(text, voice='af_heart', speed=1):
45
+ return generate_first(text, voice, speed, use_gpu=False)[0]
46
+
47
+ def tokenize_first(text, voice='af_heart'):
48
+ # Split the input text into words and return as a list of words (fix applied here)
49
+ words = text.split() # This splits the text into words based on spaces
50
+ return words # Return a list of words
51
+
52
+ def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
53
+ text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
54
+ pipeline = pipelines[voice[0]]
55
+ pack = pipeline.load_voice(voice)
56
+ use_gpu = use_gpu and CUDA_AVAILABLE
57
+ for _, ps, _ in pipeline(text, voice, speed):
58
+ ref_s = pack[len(ps)-1]
59
+ try:
60
+ if use_gpu:
61
+ audio = forward_gpu(ps, ref_s, speed)
62
+ else:
63
+ audio = models[False](ps, ref_s, speed)
64
+ except gr.exceptions.Error as e:
65
+ if use_gpu:
66
+ gr.Warning(str(e))
67
+ gr.Info('Switching to CPU')
68
+ audio = models[False](ps, ref_s, speed)
69
+ else:
70
+ raise gr.Error(e)
71
+ yield 24000, audio.numpy()
72
+
73
+ random_texts = {}
74
+ for lang in ['en']:
75
+ with open(f'{lang}.txt', 'r') as r:
76
+ random_texts[lang] = [line.strip() for line in r]
77
+
78
+ def get_random_text(voice):
79
+ lang = dict(a='en', b='en')[voice[0]]
80
+ return random.choice(random_texts[lang])
81
+
82
+ CHOICES = {
83
+ '🇺🇸 🚺 Heart ❤️': 'af_heart',
84
+ '🇺🇸 🚺 Bella 🔥': 'af_bella',
85
+ '🇺🇸 🚺 Nicole 🎧': 'af_nicole',
86
+ '🇺🇸 🚺 Aoede': 'af_aoede',
87
+ '🇺🇸 🚺 Kore': 'af_kore',
88
+ '🇺🇸 🚺 Sarah': 'af_sarah',
89
+ '🇺🇸 🚺 Nova': 'af_nova',
90
+ '🇺🇸 🚺 Sky': 'af_sky',
91
+ '🇺🇸 🚺 Alloy': 'af_alloy',
92
+ '🇺🇸 🚺 Jessica': 'af_jessica',
93
+ '🇺🇸 🚺 River': 'af_river',
94
+
95
+ '🇺🇸 🚹 Michael': 'am_michael',
96
+ '🇺🇸 🚹 Fenrir': 'am_fenrir',
97
+ '🇺🇸 🚹 Puck': 'am_puck',
98
+ '🇺🇸 🚹 Echo': 'am_echo',
99
+ '🇺🇸 🚹 Eric': 'am_eric',
100
+ '🇺🇸 🚹 Liam': 'am_liam',
101
+ '🇺🇸 🚹 Onyx': 'am_onyx',
102
+ '🇺🇸 🚹 Santa': 'am_santa',
103
+ '🇺🇸 🚹 Adam': 'am_adam',
104
+
105
+ '🇬🇧 🚺 Emma': 'bf_emma',
106
+ '🇬🇧 🚺 Isabella': 'bf_isabella',
107
+ '🇬🇧 🚺 Alice': 'bf_alice',
108
+ '🇬🇧 🚺 Lily': 'bf_lily',
109
+
110
+ '🇬🇧 🚹 George': 'bm_george',
111
+ '🇬🇧 🚹 Fable': 'bm_fable',
112
+ '🇬🇧 🚹 Lewis': 'bm_lewis',
113
+ '🇬🇧 🚹 Daniel': 'bm_daniel',
114
+
115
+ '🇪🇸 🚺 Dora': 'ef_dora',
116
+
117
+ '🇪🇸 🚹 Alex': 'em_alex',
118
+ '🇪🇸 🚹 Santa': 'em_santa',
119
+
120
+ '🇫🇷 🚺 Siwis': 'ff_siwis',
121
+
122
+ '🇮🇳 🚹 Alpha': 'hf_alpha',
123
+ '🇮🇳 🚹 Beta': 'hf_beta',
124
+
125
+ '🇮🇳 🚹 Omega': 'hm_omega',
126
+ '🇮🇳 🚹 Psi': 'hm_psi',
127
+
128
+ '🇮🇹 🚺 Sara': 'if_sara',
129
+
130
+ '🇮🇹 🚺 Nicola': 'im_nicola',
131
+
132
+ '🇯🇵 🚹 Alpha': 'jf_alpha',
133
+ '🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
134
+ '🇯🇵 🚹 Nezumi': 'jf_nezumi',
135
+ '🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
136
+
137
+ '🇯🇵 🚹 Kumo': 'jm_kumo',
138
+
139
+ '🇧🇷 🚺 Dora': 'pf_dora',
140
+
141
+ '🇧🇷 🚹 Alex': 'pm_alex',
142
+ '🇧🇷 🚹 Santa': 'pm_santa',
143
+
144
+ '🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
145
+ '🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
146
+ '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
147
+ '🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
148
+
149
+ '🇨🇳 🚹 Yunjian': 'zm_yunjian',
150
+ '🇨🇳 🚹 Yunxi': 'zm_yunxi',
151
+ '🇨🇳 🚹 Yunxia': 'zm_yunxia',
152
+ '🇨🇳 🚹 Yunyang': 'zm_yunyang',
153
+ }
154
+ for v in CHOICES.values():
155
+ pipelines[v[0]].load_voice(v)
156
+
157
+ with gr.Blocks() as generate_tab:
158
+ out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
159
+ generate_btn = gr.Button('Generate', variant='primary')
160
+ with gr.Accordion('Output Tokens', open=True):
161
+ out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
162
+ tokenize_btn = gr.Button('Tokenize', variant='secondary')
163
+ predict_btn = gr.Button('Predict', variant='secondary', visible=False)
164
+
165
+ BANNER_TEXT = '''
166
+ [***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
167
+ As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
168
+ This demo only showcases English, but you can directly use the model to access other languages.
169
+ '''
170
+
171
+ API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
172
+ API_NAME = None if API_OPEN else False
173
+ with gr.Blocks() as app:
174
+ with gr.Row():
175
+ gr.Markdown(BANNER_TEXT, container=True)
176
+ with gr.Row():
177
+ with gr.Column():
178
+ text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
179
+ with gr.Row():
180
+ voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
181
+ use_gpu = gr.Dropdown(
182
+ [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
183
+ value=CUDA_AVAILABLE,
184
+ label='Hardware',
185
+ info='GPU is usually faster, but has a usage quota',
186
+ interactive=CUDA_AVAILABLE
187
+ )
188
+ speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
189
+ random_btn = gr.Button('Random Text', variant='secondary')
190
+ with gr.Column():
191
+ gr.TabbedInterface([generate_tab], ['Generate'])
192
+ random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
193
+ generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
194
+ tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
195
+ predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
196
+
197
+ if __name__ == '__main__':
198
+ app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)