Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Title of the app | |
st.title("Hugging Face Transformers with Streamlit") | |
# Sidebar for selecting model | |
st.sidebar.header("Select a Model") | |
model_option = st.sidebar.radio("Choose a task", ["Text Generation", "Text Summarization", "Sentiment Analysis"]) | |
# Load the transformer model based on selected task | |
if model_option == "Text Generation": | |
st.header("Text Generation") | |
model = pipeline("text-generation", model="gpt2") | |
user_input = st.text_area("Enter your prompt:", "Once upon a time") | |
if st.button("Generate Text"): | |
result = model(user_input, max_length=100, num_return_sequences=1) | |
st.write(result[0]["generated_text"]) | |
elif model_option == "Text Summarization": | |
st.header("Text Summarization") | |
model = pipeline("summarization", model="facebook/bart-large-cnn") | |
user_input = st.text_area("Enter the text to summarize:", "The quick brown fox jumps over the lazy dog.") | |
if st.button("Summarize Text"): | |
result = model(user_input, min_length=25, max_length=100, length_penalty=2.0, num_beams=4, early_stopping=True) | |
st.write(result[0]["summary_text"]) | |
elif model_option == "Sentiment Analysis": | |
st.header("Sentiment Analysis") | |
model = pipeline("sentiment-analysis") | |
user_input = st.text_area("Enter the text to analyze:", "I love programming!") | |
if st.button("Analyze Sentiment"): | |
result = model(user_input) | |
st.write(f"Sentiment: {result[0]['label']}, Confidence: {result[0]['score']:.2f}") | |