import streamlit as st from transformers import pipeline # Title of the app st.title("Hugging Face Transformers with Streamlit") # Sidebar for selecting model st.sidebar.header("Select a Model") model_option = st.sidebar.radio("Choose a task", ["Text Generation", "Text Summarization", "Sentiment Analysis"]) # Load the transformer model based on selected task if model_option == "Text Generation": st.header("Text Generation") model = pipeline("text-generation", model="gpt2") user_input = st.text_area("Enter your prompt:", "Once upon a time") if st.button("Generate Text"): result = model(user_input, max_length=100, num_return_sequences=1) st.write(result[0]["generated_text"]) elif model_option == "Text Summarization": st.header("Text Summarization") model = pipeline("summarization", model="facebook/bart-large-cnn") user_input = st.text_area("Enter the text to summarize:", "The quick brown fox jumps over the lazy dog.") if st.button("Summarize Text"): result = model(user_input, min_length=25, max_length=100, length_penalty=2.0, num_beams=4, early_stopping=True) st.write(result[0]["summary_text"]) elif model_option == "Sentiment Analysis": st.header("Sentiment Analysis") model = pipeline("sentiment-analysis") user_input = st.text_area("Enter the text to analyze:", "I love programming!") if st.button("Analyze Sentiment"): result = model(user_input) st.write(f"Sentiment: {result[0]['label']}, Confidence: {result[0]['score']:.2f}")