shripadbhat commited on
Commit
423f458
·
1 Parent(s): 7935f47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -2,15 +2,15 @@ import gradio as gr
2
  import pysbd
3
  from transformers import pipeline
4
  from sentence_transformers import CrossEncoder
5
- from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
6
 
7
- model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
8
- tokenizer = AutoTokenizer.from_pretrained(model_name)
9
- model = AutoModelWithLMHead.from_pretrained(model_name)
10
 
11
- #from transformers import pipeline
12
 
13
- #text2text_generator = pipeline("text2text-generation")
14
 
15
  sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
16
  passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
@@ -39,15 +39,15 @@ def fetch_answers(question, clincal_note ):
39
 
40
 
41
  model_input = f"question: {query} context: {evidence_sentence}"
42
- #output_answer = text2text_generator(model_input)[0]['generated_text']
43
- encoded_input = tokenizer([model_input],
44
- return_tensors='pt',
45
- max_length=512,
46
- truncation=True)
47
 
48
- output = model.generate(input_ids = encoded_input.input_ids,
49
- attention_mask = encoded_input.attention_mask)
50
- output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
51
 
52
  result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
53
  result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
 
2
  import pysbd
3
  from transformers import pipeline
4
  from sentence_transformers import CrossEncoder
5
+ #from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
6
 
7
+ #model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
8
+ #tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ #model = AutoModelWithLMHead.from_pretrained(model_name)
10
 
11
+ from transformers import pipeline
12
 
13
+ text2text_generator = pipeline("text2text-generation")
14
 
15
  sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
16
  passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
 
39
 
40
 
41
  model_input = f"question: {query} context: {evidence_sentence}"
42
+ output_answer = text2text_generator(model_input)[0]['generated_text']
43
+ #encoded_input = tokenizer([model_input],
44
+ # return_tensors='pt',
45
+ # max_length=512,
46
+ # truncation=True)
47
 
48
+ #output = model.generate(input_ids = encoded_input.input_ids,
49
+ # attention_mask = encoded_input.attention_mask)
50
+ #output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
51
 
52
  result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
53
  result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"