Spaces:
Runtime error
Runtime error
Commit
·
7935f47
1
Parent(s):
5d9a931
Update app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,15 @@ import gradio as gr
|
|
2 |
import pysbd
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
-
from transformers import pipeline
|
12 |
|
13 |
-
text2text_generator = pipeline("text2text-generation")
|
14 |
|
15 |
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
16 |
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
@@ -37,18 +37,18 @@ def fetch_answers(question, clincal_note ):
|
|
37 |
if answer in passage_sentences[i]:
|
38 |
evidence_sentence = evidence_sentence + " " + passage_sentences[i]
|
39 |
|
40 |
-
|
41 |
-
#encoded_input = tokenizer([model_input],
|
42 |
-
# return_tensors='pt',
|
43 |
-
# max_length=512,
|
44 |
-
# truncation=True)
|
45 |
-
|
46 |
-
#output = model.generate(input_ids = encoded_input.input_ids,
|
47 |
-
# attention_mask = encoded_input.attention_mask)
|
48 |
-
#output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
49 |
-
|
50 |
model_input = f"question: {query} context: {evidence_sentence}"
|
51 |
-
output_answer = text2text_generator(model_input)[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
|
53 |
result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
|
54 |
top_5_query_paragraph_answer_list += result_str
|
|
|
2 |
import pysbd
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
6 |
|
7 |
+
model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelWithLMHead.from_pretrained(model_name)
|
10 |
|
11 |
+
#from transformers import pipeline
|
12 |
|
13 |
+
#text2text_generator = pipeline("text2text-generation")
|
14 |
|
15 |
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
16 |
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
|
|
37 |
if answer in passage_sentences[i]:
|
38 |
evidence_sentence = evidence_sentence + " " + passage_sentences[i]
|
39 |
|
40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
model_input = f"question: {query} context: {evidence_sentence}"
|
42 |
+
#output_answer = text2text_generator(model_input)[0]['generated_text']
|
43 |
+
encoded_input = tokenizer([model_input],
|
44 |
+
return_tensors='pt',
|
45 |
+
max_length=512,
|
46 |
+
truncation=True)
|
47 |
+
|
48 |
+
output = model.generate(input_ids = encoded_input.input_ids,
|
49 |
+
attention_mask = encoded_input.attention_mask)
|
50 |
+
output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
51 |
+
|
52 |
result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
|
53 |
result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
|
54 |
top_5_query_paragraph_answer_list += result_str
|