shripadbhat commited on
Commit
7935f47
·
1 Parent(s): 5d9a931

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -17
app.py CHANGED
@@ -2,15 +2,15 @@ import gradio as gr
2
  import pysbd
3
  from transformers import pipeline
4
  from sentence_transformers import CrossEncoder
5
- #from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
6
 
7
- #model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
8
- #tokenizer = AutoTokenizer.from_pretrained(model_name)
9
- #model = AutoModelWithLMHead.from_pretrained(model_name)
10
 
11
- from transformers import pipeline
12
 
13
- text2text_generator = pipeline("text2text-generation")
14
 
15
  sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
16
  passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
@@ -37,18 +37,18 @@ def fetch_answers(question, clincal_note ):
37
  if answer in passage_sentences[i]:
38
  evidence_sentence = evidence_sentence + " " + passage_sentences[i]
39
 
40
-
41
- #encoded_input = tokenizer([model_input],
42
- # return_tensors='pt',
43
- # max_length=512,
44
- # truncation=True)
45
-
46
- #output = model.generate(input_ids = encoded_input.input_ids,
47
- # attention_mask = encoded_input.attention_mask)
48
- #output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
49
-
50
  model_input = f"question: {query} context: {evidence_sentence}"
51
- output_answer = text2text_generator(model_input)[0]['generated_text']
 
 
 
 
 
 
 
 
 
52
  result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
53
  result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
54
  top_5_query_paragraph_answer_list += result_str
 
2
  import pysbd
3
  from transformers import pipeline
4
  from sentence_transformers import CrossEncoder
5
+ from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
6
 
7
+ model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelWithLMHead.from_pretrained(model_name)
10
 
11
+ #from transformers import pipeline
12
 
13
+ #text2text_generator = pipeline("text2text-generation")
14
 
15
  sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
16
  passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
 
37
  if answer in passage_sentences[i]:
38
  evidence_sentence = evidence_sentence + " " + passage_sentences[i]
39
 
40
+
 
 
 
 
 
 
 
 
 
41
  model_input = f"question: {query} context: {evidence_sentence}"
42
+ #output_answer = text2text_generator(model_input)[0]['generated_text']
43
+ encoded_input = tokenizer([model_input],
44
+ return_tensors='pt',
45
+ max_length=512,
46
+ truncation=True)
47
+
48
+ output = model.generate(input_ids = encoded_input.input_ids,
49
+ attention_mask = encoded_input.attention_mask)
50
+ output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
51
+
52
  result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
53
  result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
54
  top_5_query_paragraph_answer_list += result_str