sajalmadan0909's picture
Update app.py
5ee4da1 verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
import warnings
warnings.filterwarnings("ignore")
class MultiModelIndianAddressNER:
def __init__(self):
# Available models configuration
self.models_config = {
"TinyBERT": {
"name": "shiprocket-ai/open-tinybert-indian-address-ner",
"description": "Lightweight and fast - 66.4M parameters",
"base_model": "TinyBERT"
},
"ModernBERT": {
"name": "shiprocket-ai/open-modernbert-indian-address-ner",
"description": "Modern architecture - 150M parameters",
"base_model": "ModernBERT"
},
"IndicBERT": {
"name": "shiprocket-ai/open-indicbert-indian-address-ner",
"description": "Indic language optimized - 32.9M parameters",
"base_model": "IndicBERT"
}
}
# Cache for loaded models
self.loaded_models = {}
self.loaded_tokenizers = {}
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Entity mappings (same for all models)
self.id2entity = {
"0": "O",
"1": "B-building_name",
"2": "I-building_name",
"3": "B-city",
"4": "I-city",
"5": "B-country",
"6": "I-country",
"7": "B-floor",
"8": "I-floor",
"9": "B-house_details",
"10": "I-house_details",
"11": "B-locality",
"12": "I-locality",
"13": "B-pincode",
"14": "I-pincode",
"15": "B-road",
"16": "I-road",
"17": "B-state",
"18": "I-state",
"19": "B-sub_locality",
"20": "I-sub_locality",
"21": "B-landmarks",
"22": "I-landmarks"
}
# Load default model (TinyBERT)
self.load_model("TinyBERT")
def load_model(self, model_key):
"""Load a specific model if not already loaded"""
if model_key not in self.loaded_models:
print(f"Loading {model_key} model...")
model_name = self.models_config[model_key]["name"]
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
model.to(self.device)
model.eval()
self.loaded_tokenizers[model_key] = tokenizer
self.loaded_models[model_key] = model
print(f"βœ… {model_key} model loaded successfully!")
except Exception as e:
print(f"❌ Error loading {model_key}: {str(e)}")
raise e
return self.loaded_tokenizers[model_key], self.loaded_models[model_key]
def predict(self, address, model_key="TinyBERT"):
"""Extract entities from an Indian address using specified model"""
if not address.strip():
return {}, f"Using {model_key} model"
try:
# Load the selected model
tokenizer, model = self.load_model(model_key)
# Different approaches based on tokenizer type
if model_key == "IndicBERT":
# IndicBERT uses SentencePiece - use token-based approach
entities = self._predict_token_based(address, tokenizer, model)
else:
# TinyBERT and ModernBERT - use offset mapping approach
entities = self._predict_offset_based(address, tokenizer, model)
model_info = f"Using {model_key} ({self.models_config[model_key]['description']})"
return entities, model_info
except Exception as e:
return {}, f"Error with {model_key}: {str(e)}"
def _predict_offset_based(self, address, tokenizer, model):
"""Offset-based prediction for TinyBERT and ModernBERT"""
inputs = tokenizer(
address,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128,
return_offsets_mapping=True
)
# Extract offset mapping before moving to device
offset_mapping = inputs.pop("offset_mapping")[0]
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_ids = torch.argmax(predictions, dim=-1)
confidence_scores = torch.max(predictions, dim=-1)[0]
# Extract entities using offset mapping
return self.extract_entities_with_offsets(
address,
predicted_ids[0],
confidence_scores[0],
offset_mapping
)
def _predict_token_based(self, address, tokenizer, model):
"""Token-based prediction for IndicBERT (SentencePiece)"""
inputs = tokenizer(
address,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_ids = torch.argmax(predictions, dim=-1)
confidence_scores = torch.max(predictions, dim=-1)[0]
# Convert to tokens and labels
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
predicted_labels = [self.id2entity.get(str(id.item()), "O") for id in predicted_ids[0]]
confidences = confidence_scores[0].cpu().numpy()
# Group entities with proper text reconstruction
return self.group_entities_sentencepiece(tokens, predicted_labels, confidences)
def extract_entities_with_offsets(self, original_text, predicted_ids, confidences, offset_mapping):
"""Extract entities using offset mapping for accurate text reconstruction"""
entities = {}
current_entity = None
for i, (pred_id, conf) in enumerate(zip(predicted_ids, confidences)):
if i >= len(offset_mapping):
break
start, end = offset_mapping[i]
# Skip special tokens (they have (0,0) mapping)
if start == end == 0:
continue
label = self.id2entity.get(str(pred_id.item()), "O")
if label.startswith("B-"):
# Save previous entity
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
# Start new entity
entity_type = label[2:] # Remove "B-"
current_entity = {
"type": entity_type,
"text": original_text[start:end],
"confidence": conf.item(),
"start": start,
"end": end
}
elif label.startswith("I-") and current_entity:
# Continue current entity
entity_type = label[2:] # Remove "I-"
if entity_type == current_entity["type"]:
# Extend the entity to include this token
current_entity["text"] = original_text[current_entity["start"]:end]
current_entity["confidence"] = (current_entity["confidence"] + conf.item()) / 2
current_entity["end"] = end
elif label == "O" and current_entity:
# End current entity
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
current_entity = None
# Add final entity if exists
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
return entities
def group_entities_sentencepiece(self, tokens, labels, confidences):
"""Group entities for SentencePiece tokenization (IndicBERT) with proper text reconstruction"""
entities = {}
current_entity = None
for i, (token, label, conf) in enumerate(zip(tokens, labels, confidences)):
if token in ["<s>", "</s>", "<pad>", "<unk>"]:
continue
if label.startswith("B-"):
# Save previous entity
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
# Clean up the text by removing SentencePiece markers and extra spaces
clean_text = self._clean_sentencepiece_text(current_entity["text"])
entities[entity_type].append({
"text": clean_text,
"confidence": current_entity["confidence"]
})
# Start new entity - handle SentencePiece format
entity_type = label[2:] # Remove "B-"
clean_token = token.replace("▁", " ").strip()
current_entity = {
"type": entity_type,
"text": clean_token,
"confidence": conf
}
elif label.startswith("I-") and current_entity:
# Continue current entity
entity_type = label[2:] # Remove "I-"
if entity_type == current_entity["type"]:
# Handle SentencePiece subword continuation
if token.startswith("▁"):
# New word boundary
current_entity["text"] += " " + token.replace("▁", "")
else:
# Subword continuation
current_entity["text"] += token
current_entity["confidence"] = (current_entity["confidence"] + conf) / 2
elif label == "O" and current_entity:
# End current entity
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
clean_text = self._clean_sentencepiece_text(current_entity["text"])
entities[entity_type].append({
"text": clean_text,
"confidence": current_entity["confidence"]
})
current_entity = None
# Add final entity if exists
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
clean_text = self._clean_sentencepiece_text(current_entity["text"])
entities[entity_type].append({
"text": clean_text,
"confidence": current_entity["confidence"]
})
return entities
def _clean_sentencepiece_text(self, text):
"""Clean SentencePiece text by removing markers and fixing spacing"""
# Remove SentencePiece markers
clean_text = text.replace("▁", " ")
# Remove extra spaces and clean up
clean_text = " ".join(clean_text.split())
# Remove trailing commas and spaces
clean_text = clean_text.strip().rstrip(",").strip()
return clean_text
# Initialize the multi-model system
print("Initializing Multi-Model Indian Address NER...")
ner_system = MultiModelIndianAddressNER()
print("System ready!")
def process_address(address_text, selected_model):
"""Process address and return formatted results with selected model"""
if not address_text.strip():
return "Please enter an address to analyze."
try:
# Extract entities using selected model
entities, model_info = ner_system.predict(address_text, selected_model)
if not entities:
return f"❌ No entities found in the provided address.\n\n**{model_info}**"
# Format results
result = f"πŸ“ **Input Address:** {address_text}\n\n"
result += f"πŸ€– **{model_info}**\n\n"
result += "🏷️ **Extracted Entities:**\n\n"
# Sort entities by type for better presentation
entity_order = [
'building_name', 'floor', 'house_details', 'road',
'sub_locality', 'locality', 'landmarks', 'city',
'state', 'country', 'pincode'
]
displayed_entities = set()
# Display entities in order
for entity_type in entity_order:
if entity_type in entities and entity_type not in displayed_entities:
result += f"**{entity_type.replace('_', ' ').title()}:**\n"
for entity in entities[entity_type]:
confidence = entity['confidence']
text = entity['text']
confidence_icon = "🟒" if confidence > 0.8 else "🟑" if confidence > 0.6 else "πŸ”΄"
result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n"
result += "\n"
displayed_entities.add(entity_type)
# Display any remaining entities
for entity_type, entity_list in entities.items():
if entity_type not in displayed_entities:
result += f"**{entity_type.replace('_', ' ').title()}:**\n"
for entity in entity_list:
confidence = entity['confidence']
text = entity['text']
confidence_icon = "🟒" if confidence > 0.8 else "🟑" if confidence > 0.6 else "πŸ”΄"
result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n"
result += "\n"
result += "\n**Legend:**\n"
result += "🟒 High confidence (>0.8)\n"
result += "🟑 Medium confidence (0.6-0.8)\n"
result += "πŸ”΄ Low confidence (<0.6)\n"
return result
except Exception as e:
return f"❌ Error processing address: {str(e)}"
def compare_models(address_text):
"""Compare results from all models"""
if not address_text.strip():
return "Please enter an address to compare models."
result = f"πŸ“ **Address:** {address_text}\n\n"
result += "πŸ”„ **Model Comparison:**\n\n"
for model_key in ner_system.models_config.keys():
try:
entities, model_info = ner_system.predict(address_text, model_key)
result += f"### {model_key}\n"
result += f"*{ner_system.models_config[model_key]['description']}*\n\n"
if entities:
entity_count = sum(len(entity_list) for entity_list in entities.values())
result += f"**Found {entity_count} entities:**\n"
for entity_type, entity_list in sorted(entities.items()):
for entity in entity_list:
confidence = entity['confidence']
text = entity['text']
confidence_icon = "🟒" if confidence > 0.8 else "🟑" if confidence > 0.6 else "πŸ”΄"
result += f" {confidence_icon} {entity_type}: {text} ({confidence:.3f})\n"
else:
result += "❌ No entities found\n"
result += "\n---\n\n"
except Exception as e:
result += f"### {model_key}\n❌ Error: {str(e)}\n\n---\n\n"
return result
# Sample addresses for examples
sample_addresses = [
"Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
"DLF Cyber City, Sector 25, Gurgaon, Haryana",
"Flat 201, MG Road, Bangalore, Karnataka, 560001",
"Phoenix Mall, Kurla West, Mumbai",
"House No 456, Green Park Extension, New Delhi, 110016",
"Office 302, Tech Park, Electronic City, Bangalore, Karnataka, 560100"
]
# Create Gradio interface
with gr.Blocks(title="Multi-Model Indian Address NER", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🏠 Multi-Model Indian Address Named Entity Recognition
Compare different transformer models for extracting components from Indian addresses. Choose between TinyBERT (fast), ModernBERT (modern), and IndicBERT (Indic-optimized).
**Supported entities:** Building Name, Floor, House Details, Road, Sub-locality, Locality, Landmarks, City, State, Country, Pincode
""")
with gr.Tab("Single Model Analysis"):
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=list(ner_system.models_config.keys()),
value="TinyBERT",
label="Select Model",
info="Choose which model to use for entity extraction"
)
address_input = gr.Textbox(
label="Enter Indian Address",
placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
lines=3,
max_lines=5
)
submit_btn = gr.Button("πŸ” Extract Entities", variant="primary")
gr.Markdown("### πŸ“ Sample Addresses (click to use):")
sample_buttons = []
for addr in sample_addresses:
btn = gr.Button(addr, size="sm")
btn.click(fn=lambda x=addr: x, outputs=address_input)
sample_buttons.append(btn)
with gr.Column(scale=1):
output_text = gr.Markdown(
label="Extracted Entities",
value="Select a model, enter an address, and click 'Extract Entities' to see the results."
)
# Event handlers for single model
submit_btn.click(
fn=process_address,
inputs=[address_input, model_dropdown],
outputs=output_text
)
address_input.submit(
fn=process_address,
inputs=[address_input, model_dropdown],
outputs=output_text
)
with gr.Tab("Model Comparison"):
with gr.Row():
with gr.Column(scale=1):
address_compare = gr.Textbox(
label="Enter Indian Address for Comparison",
placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
lines=3,
max_lines=5
)
compare_btn = gr.Button("πŸ”„ Compare All Models", variant="secondary")
gr.Markdown("### πŸ“ Sample Addresses (click to use):")
sample_buttons_compare = []
for addr in sample_addresses:
btn = gr.Button(addr, size="sm")
btn.click(fn=lambda x=addr: x, outputs=address_compare)
sample_buttons_compare.append(btn)
with gr.Column(scale=1):
comparison_output = gr.Markdown(
label="Model Comparison Results",
value="Enter an address and click 'Compare All Models' to see how different models perform."
)
# Event handlers for comparison
compare_btn.click(
fn=compare_models,
inputs=address_compare,
outputs=comparison_output
)
address_compare.submit(
fn=compare_models,
inputs=address_compare,
outputs=comparison_output
)
with gr.Tab("Model Information"):
gr.Markdown("""
## πŸ“Š Available Models
### TinyBERT
- **Base Model**: huawei-noah/TinyBERT_General_6L_768D
- **Model Size**: ~66.4M parameters
- **Advantages**: Fastest inference, lowest memory usage, mobile-friendly
- **Best for**: Real-time applications, edge deployment
### ModernBERT
- **Base Model**: answerdotai/ModernBERT-base
- **Model Size**: ~150M parameters
- **Advantages**: Latest architectural improvements, balanced performance
- **Best for**: High-accuracy requirements with reasonable speed
### IndicBERT
- **Base Model**: ai4bharat/indic-bert
- **Model Size**: ~32.9M parameters
- **Advantages**: Optimized for Indian languages and contexts
- **Best for**: Mixed language addresses, regional Indian contexts
## 🎯 Entity Types Supported
All models can extract the following entities:
- **Building Name**: Apartment/building names
- **Floor**: Floor numbers and details
- **House Details**: House/flat numbers
- **Road**: Street and road names
- **Sub-locality**: Sector, block details
- **Locality**: Area, neighborhood names
- **Landmarks**: Notable nearby locations
- **City**: City names
- **State**: State names
- **Country**: Country names
- **Pincode**: Postal codes
""")
gr.Markdown("""
---
**Models:**
- [TinyBERT](https://huggingface.co/shiprocket-ai/open-tinybert-indian-address-ner) |
[ModernBERT](https://huggingface.co/shiprocket-ai/open-modernbert-indian-address-ner) |
[IndicBERT](https://huggingface.co/shiprocket-ai/open-indicbert-indian-address-ner)
**About:** These models are specifically trained on Indian address patterns and can handle various formats and styles common in Indian addresses.
""")
if __name__ == "__main__":
demo.launch()