File size: 23,295 Bytes
4039061 5ee4da1 4039061 5ee4da1 4039061 8808792 4039061 8808792 4039061 bb94fb7 4039061 bb94fb7 4039061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
import warnings
warnings.filterwarnings("ignore")
class MultiModelIndianAddressNER:
def __init__(self):
# Available models configuration
self.models_config = {
"TinyBERT": {
"name": "shiprocket-ai/open-tinybert-indian-address-ner",
"description": "Lightweight and fast - 66.4M parameters",
"base_model": "TinyBERT"
},
"ModernBERT": {
"name": "shiprocket-ai/open-modernbert-indian-address-ner",
"description": "Modern architecture - 150M parameters",
"base_model": "ModernBERT"
},
"IndicBERT": {
"name": "shiprocket-ai/open-indicbert-indian-address-ner",
"description": "Indic language optimized - 32.9M parameters",
"base_model": "IndicBERT"
}
}
# Cache for loaded models
self.loaded_models = {}
self.loaded_tokenizers = {}
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Entity mappings (same for all models)
self.id2entity = {
"0": "O",
"1": "B-building_name",
"2": "I-building_name",
"3": "B-city",
"4": "I-city",
"5": "B-country",
"6": "I-country",
"7": "B-floor",
"8": "I-floor",
"9": "B-house_details",
"10": "I-house_details",
"11": "B-locality",
"12": "I-locality",
"13": "B-pincode",
"14": "I-pincode",
"15": "B-road",
"16": "I-road",
"17": "B-state",
"18": "I-state",
"19": "B-sub_locality",
"20": "I-sub_locality",
"21": "B-landmarks",
"22": "I-landmarks"
}
# Load default model (TinyBERT)
self.load_model("TinyBERT")
def load_model(self, model_key):
"""Load a specific model if not already loaded"""
if model_key not in self.loaded_models:
print(f"Loading {model_key} model...")
model_name = self.models_config[model_key]["name"]
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
model.to(self.device)
model.eval()
self.loaded_tokenizers[model_key] = tokenizer
self.loaded_models[model_key] = model
print(f"β
{model_key} model loaded successfully!")
except Exception as e:
print(f"β Error loading {model_key}: {str(e)}")
raise e
return self.loaded_tokenizers[model_key], self.loaded_models[model_key]
def predict(self, address, model_key="TinyBERT"):
"""Extract entities from an Indian address using specified model"""
if not address.strip():
return {}, f"Using {model_key} model"
try:
# Load the selected model
tokenizer, model = self.load_model(model_key)
# Different approaches based on tokenizer type
if model_key == "IndicBERT":
# IndicBERT uses SentencePiece - use token-based approach
entities = self._predict_token_based(address, tokenizer, model)
else:
# TinyBERT and ModernBERT - use offset mapping approach
entities = self._predict_offset_based(address, tokenizer, model)
model_info = f"Using {model_key} ({self.models_config[model_key]['description']})"
return entities, model_info
except Exception as e:
return {}, f"Error with {model_key}: {str(e)}"
def _predict_offset_based(self, address, tokenizer, model):
"""Offset-based prediction for TinyBERT and ModernBERT"""
inputs = tokenizer(
address,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128,
return_offsets_mapping=True
)
# Extract offset mapping before moving to device
offset_mapping = inputs.pop("offset_mapping")[0]
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_ids = torch.argmax(predictions, dim=-1)
confidence_scores = torch.max(predictions, dim=-1)[0]
# Extract entities using offset mapping
return self.extract_entities_with_offsets(
address,
predicted_ids[0],
confidence_scores[0],
offset_mapping
)
def _predict_token_based(self, address, tokenizer, model):
"""Token-based prediction for IndicBERT (SentencePiece)"""
inputs = tokenizer(
address,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_ids = torch.argmax(predictions, dim=-1)
confidence_scores = torch.max(predictions, dim=-1)[0]
# Convert to tokens and labels
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
predicted_labels = [self.id2entity.get(str(id.item()), "O") for id in predicted_ids[0]]
confidences = confidence_scores[0].cpu().numpy()
# Group entities with proper text reconstruction
return self.group_entities_sentencepiece(tokens, predicted_labels, confidences)
def extract_entities_with_offsets(self, original_text, predicted_ids, confidences, offset_mapping):
"""Extract entities using offset mapping for accurate text reconstruction"""
entities = {}
current_entity = None
for i, (pred_id, conf) in enumerate(zip(predicted_ids, confidences)):
if i >= len(offset_mapping):
break
start, end = offset_mapping[i]
# Skip special tokens (they have (0,0) mapping)
if start == end == 0:
continue
label = self.id2entity.get(str(pred_id.item()), "O")
if label.startswith("B-"):
# Save previous entity
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
# Start new entity
entity_type = label[2:] # Remove "B-"
current_entity = {
"type": entity_type,
"text": original_text[start:end],
"confidence": conf.item(),
"start": start,
"end": end
}
elif label.startswith("I-") and current_entity:
# Continue current entity
entity_type = label[2:] # Remove "I-"
if entity_type == current_entity["type"]:
# Extend the entity to include this token
current_entity["text"] = original_text[current_entity["start"]:end]
current_entity["confidence"] = (current_entity["confidence"] + conf.item()) / 2
current_entity["end"] = end
elif label == "O" and current_entity:
# End current entity
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
current_entity = None
# Add final entity if exists
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
entities[entity_type].append({
"text": current_entity["text"],
"confidence": current_entity["confidence"]
})
return entities
def group_entities_sentencepiece(self, tokens, labels, confidences):
"""Group entities for SentencePiece tokenization (IndicBERT) with proper text reconstruction"""
entities = {}
current_entity = None
for i, (token, label, conf) in enumerate(zip(tokens, labels, confidences)):
if token in ["<s>", "</s>", "<pad>", "<unk>"]:
continue
if label.startswith("B-"):
# Save previous entity
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
# Clean up the text by removing SentencePiece markers and extra spaces
clean_text = self._clean_sentencepiece_text(current_entity["text"])
entities[entity_type].append({
"text": clean_text,
"confidence": current_entity["confidence"]
})
# Start new entity - handle SentencePiece format
entity_type = label[2:] # Remove "B-"
clean_token = token.replace("β", " ").strip()
current_entity = {
"type": entity_type,
"text": clean_token,
"confidence": conf
}
elif label.startswith("I-") and current_entity:
# Continue current entity
entity_type = label[2:] # Remove "I-"
if entity_type == current_entity["type"]:
# Handle SentencePiece subword continuation
if token.startswith("β"):
# New word boundary
current_entity["text"] += " " + token.replace("β", "")
else:
# Subword continuation
current_entity["text"] += token
current_entity["confidence"] = (current_entity["confidence"] + conf) / 2
elif label == "O" and current_entity:
# End current entity
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
clean_text = self._clean_sentencepiece_text(current_entity["text"])
entities[entity_type].append({
"text": clean_text,
"confidence": current_entity["confidence"]
})
current_entity = None
# Add final entity if exists
if current_entity:
entity_type = current_entity["type"]
if entity_type not in entities:
entities[entity_type] = []
clean_text = self._clean_sentencepiece_text(current_entity["text"])
entities[entity_type].append({
"text": clean_text,
"confidence": current_entity["confidence"]
})
return entities
def _clean_sentencepiece_text(self, text):
"""Clean SentencePiece text by removing markers and fixing spacing"""
# Remove SentencePiece markers
clean_text = text.replace("β", " ")
# Remove extra spaces and clean up
clean_text = " ".join(clean_text.split())
# Remove trailing commas and spaces
clean_text = clean_text.strip().rstrip(",").strip()
return clean_text
# Initialize the multi-model system
print("Initializing Multi-Model Indian Address NER...")
ner_system = MultiModelIndianAddressNER()
print("System ready!")
def process_address(address_text, selected_model):
"""Process address and return formatted results with selected model"""
if not address_text.strip():
return "Please enter an address to analyze."
try:
# Extract entities using selected model
entities, model_info = ner_system.predict(address_text, selected_model)
if not entities:
return f"β No entities found in the provided address.\n\n**{model_info}**"
# Format results
result = f"π **Input Address:** {address_text}\n\n"
result += f"π€ **{model_info}**\n\n"
result += "π·οΈ **Extracted Entities:**\n\n"
# Sort entities by type for better presentation
entity_order = [
'building_name', 'floor', 'house_details', 'road',
'sub_locality', 'locality', 'landmarks', 'city',
'state', 'country', 'pincode'
]
displayed_entities = set()
# Display entities in order
for entity_type in entity_order:
if entity_type in entities and entity_type not in displayed_entities:
result += f"**{entity_type.replace('_', ' ').title()}:**\n"
for entity in entities[entity_type]:
confidence = entity['confidence']
text = entity['text']
confidence_icon = "π’" if confidence > 0.8 else "π‘" if confidence > 0.6 else "π΄"
result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n"
result += "\n"
displayed_entities.add(entity_type)
# Display any remaining entities
for entity_type, entity_list in entities.items():
if entity_type not in displayed_entities:
result += f"**{entity_type.replace('_', ' ').title()}:**\n"
for entity in entity_list:
confidence = entity['confidence']
text = entity['text']
confidence_icon = "π’" if confidence > 0.8 else "π‘" if confidence > 0.6 else "π΄"
result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n"
result += "\n"
result += "\n**Legend:**\n"
result += "π’ High confidence (>0.8)\n"
result += "π‘ Medium confidence (0.6-0.8)\n"
result += "π΄ Low confidence (<0.6)\n"
return result
except Exception as e:
return f"β Error processing address: {str(e)}"
def compare_models(address_text):
"""Compare results from all models"""
if not address_text.strip():
return "Please enter an address to compare models."
result = f"π **Address:** {address_text}\n\n"
result += "π **Model Comparison:**\n\n"
for model_key in ner_system.models_config.keys():
try:
entities, model_info = ner_system.predict(address_text, model_key)
result += f"### {model_key}\n"
result += f"*{ner_system.models_config[model_key]['description']}*\n\n"
if entities:
entity_count = sum(len(entity_list) for entity_list in entities.values())
result += f"**Found {entity_count} entities:**\n"
for entity_type, entity_list in sorted(entities.items()):
for entity in entity_list:
confidence = entity['confidence']
text = entity['text']
confidence_icon = "π’" if confidence > 0.8 else "π‘" if confidence > 0.6 else "π΄"
result += f" {confidence_icon} {entity_type}: {text} ({confidence:.3f})\n"
else:
result += "β No entities found\n"
result += "\n---\n\n"
except Exception as e:
result += f"### {model_key}\nβ Error: {str(e)}\n\n---\n\n"
return result
# Sample addresses for examples
sample_addresses = [
"Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
"DLF Cyber City, Sector 25, Gurgaon, Haryana",
"Flat 201, MG Road, Bangalore, Karnataka, 560001",
"Phoenix Mall, Kurla West, Mumbai",
"House No 456, Green Park Extension, New Delhi, 110016",
"Office 302, Tech Park, Electronic City, Bangalore, Karnataka, 560100"
]
# Create Gradio interface
with gr.Blocks(title="Multi-Model Indian Address NER", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Multi-Model Indian Address Named Entity Recognition
Compare different transformer models for extracting components from Indian addresses. Choose between TinyBERT (fast), ModernBERT (modern), and IndicBERT (Indic-optimized).
**Supported entities:** Building Name, Floor, House Details, Road, Sub-locality, Locality, Landmarks, City, State, Country, Pincode
""")
with gr.Tab("Single Model Analysis"):
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=list(ner_system.models_config.keys()),
value="TinyBERT",
label="Select Model",
info="Choose which model to use for entity extraction"
)
address_input = gr.Textbox(
label="Enter Indian Address",
placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
lines=3,
max_lines=5
)
submit_btn = gr.Button("π Extract Entities", variant="primary")
gr.Markdown("### π Sample Addresses (click to use):")
sample_buttons = []
for addr in sample_addresses:
btn = gr.Button(addr, size="sm")
btn.click(fn=lambda x=addr: x, outputs=address_input)
sample_buttons.append(btn)
with gr.Column(scale=1):
output_text = gr.Markdown(
label="Extracted Entities",
value="Select a model, enter an address, and click 'Extract Entities' to see the results."
)
# Event handlers for single model
submit_btn.click(
fn=process_address,
inputs=[address_input, model_dropdown],
outputs=output_text
)
address_input.submit(
fn=process_address,
inputs=[address_input, model_dropdown],
outputs=output_text
)
with gr.Tab("Model Comparison"):
with gr.Row():
with gr.Column(scale=1):
address_compare = gr.Textbox(
label="Enter Indian Address for Comparison",
placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
lines=3,
max_lines=5
)
compare_btn = gr.Button("π Compare All Models", variant="secondary")
gr.Markdown("### π Sample Addresses (click to use):")
sample_buttons_compare = []
for addr in sample_addresses:
btn = gr.Button(addr, size="sm")
btn.click(fn=lambda x=addr: x, outputs=address_compare)
sample_buttons_compare.append(btn)
with gr.Column(scale=1):
comparison_output = gr.Markdown(
label="Model Comparison Results",
value="Enter an address and click 'Compare All Models' to see how different models perform."
)
# Event handlers for comparison
compare_btn.click(
fn=compare_models,
inputs=address_compare,
outputs=comparison_output
)
address_compare.submit(
fn=compare_models,
inputs=address_compare,
outputs=comparison_output
)
with gr.Tab("Model Information"):
gr.Markdown("""
## π Available Models
### TinyBERT
- **Base Model**: huawei-noah/TinyBERT_General_6L_768D
- **Model Size**: ~66.4M parameters
- **Advantages**: Fastest inference, lowest memory usage, mobile-friendly
- **Best for**: Real-time applications, edge deployment
### ModernBERT
- **Base Model**: answerdotai/ModernBERT-base
- **Model Size**: ~150M parameters
- **Advantages**: Latest architectural improvements, balanced performance
- **Best for**: High-accuracy requirements with reasonable speed
### IndicBERT
- **Base Model**: ai4bharat/indic-bert
- **Model Size**: ~32.9M parameters
- **Advantages**: Optimized for Indian languages and contexts
- **Best for**: Mixed language addresses, regional Indian contexts
## π― Entity Types Supported
All models can extract the following entities:
- **Building Name**: Apartment/building names
- **Floor**: Floor numbers and details
- **House Details**: House/flat numbers
- **Road**: Street and road names
- **Sub-locality**: Sector, block details
- **Locality**: Area, neighborhood names
- **Landmarks**: Notable nearby locations
- **City**: City names
- **State**: State names
- **Country**: Country names
- **Pincode**: Postal codes
""")
gr.Markdown("""
---
**Models:**
- [TinyBERT](https://huggingface.co/shiprocket-ai/open-tinybert-indian-address-ner) |
[ModernBERT](https://huggingface.co/shiprocket-ai/open-modernbert-indian-address-ner) |
[IndicBERT](https://huggingface.co/shiprocket-ai/open-indicbert-indian-address-ner)
**About:** These models are specifically trained on Indian address patterns and can handle various formats and styles common in Indian addresses.
""")
if __name__ == "__main__":
demo.launch() |