Update app.py
Browse files
app.py
CHANGED
@@ -101,89 +101,7 @@ class MultiModelIndianAddressNER:
|
|
101 |
entities = self._predict_offset_based(address, tokenizer, model)
|
102 |
|
103 |
model_info = f"Using {model_key} ({self.models_config[model_key]['description']})"
|
104 |
-
return entities
|
105 |
-
|
106 |
-
def group_entities_sentencepiece(self, tokens, labels, confidences):
|
107 |
-
"""Group entities for SentencePiece tokenization (IndicBERT) with proper text reconstruction"""
|
108 |
-
entities = {}
|
109 |
-
current_entity = None
|
110 |
-
|
111 |
-
for i, (token, label, conf) in enumerate(zip(tokens, labels, confidences)):
|
112 |
-
if token in ["<s>", "</s>", "<pad>", "<unk>"]:
|
113 |
-
continue
|
114 |
-
|
115 |
-
if label.startswith("B-"):
|
116 |
-
# Save previous entity
|
117 |
-
if current_entity:
|
118 |
-
entity_type = current_entity["type"]
|
119 |
-
if entity_type not in entities:
|
120 |
-
entities[entity_type] = []
|
121 |
-
|
122 |
-
# Clean up the text by removing SentencePiece markers and extra spaces
|
123 |
-
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
124 |
-
entities[entity_type].append({
|
125 |
-
"text": clean_text,
|
126 |
-
"confidence": current_entity["confidence"]
|
127 |
-
})
|
128 |
-
|
129 |
-
# Start new entity - handle SentencePiece format
|
130 |
-
entity_type = label[2:] # Remove "B-"
|
131 |
-
clean_token = token.replace("β", " ").strip()
|
132 |
-
current_entity = {
|
133 |
-
"type": entity_type,
|
134 |
-
"text": clean_token,
|
135 |
-
"confidence": conf
|
136 |
-
}
|
137 |
-
|
138 |
-
elif label.startswith("I-") and current_entity:
|
139 |
-
# Continue current entity
|
140 |
-
entity_type = label[2:] # Remove "I-"
|
141 |
-
if entity_type == current_entity["type"]:
|
142 |
-
# Handle SentencePiece subword continuation
|
143 |
-
if token.startswith("β"):
|
144 |
-
# New word boundary
|
145 |
-
current_entity["text"] += " " + token.replace("β", "")
|
146 |
-
else:
|
147 |
-
# Subword continuation
|
148 |
-
current_entity["text"] += token
|
149 |
-
current_entity["confidence"] = (current_entity["confidence"] + conf) / 2
|
150 |
-
|
151 |
-
elif label == "O" and current_entity:
|
152 |
-
# End current entity
|
153 |
-
entity_type = current_entity["type"]
|
154 |
-
if entity_type not in entities:
|
155 |
-
entities[entity_type] = []
|
156 |
-
|
157 |
-
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
158 |
-
entities[entity_type].append({
|
159 |
-
"text": clean_text,
|
160 |
-
"confidence": current_entity["confidence"]
|
161 |
-
})
|
162 |
-
current_entity = None
|
163 |
-
|
164 |
-
# Add final entity if exists
|
165 |
-
if current_entity:
|
166 |
-
entity_type = current_entity["type"]
|
167 |
-
if entity_type not in entities:
|
168 |
-
entities[entity_type] = []
|
169 |
-
|
170 |
-
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
171 |
-
entities[entity_type].append({
|
172 |
-
"text": clean_text,
|
173 |
-
"confidence": current_entity["confidence"]
|
174 |
-
})
|
175 |
-
|
176 |
-
return entities
|
177 |
-
|
178 |
-
def _clean_sentencepiece_text(self, text):
|
179 |
-
"""Clean SentencePiece text by removing markers and fixing spacing"""
|
180 |
-
# Remove SentencePiece markers
|
181 |
-
clean_text = text.replace("β", " ")
|
182 |
-
# Remove extra spaces and clean up
|
183 |
-
clean_text = " ".join(clean_text.split())
|
184 |
-
# Remove trailing commas and spaces
|
185 |
-
clean_text = clean_text.strip().rstrip(",").strip()
|
186 |
-
return clean_text, model_info
|
187 |
|
188 |
except Exception as e:
|
189 |
return {}, f"Error with {model_key}: {str(e)}"
|
@@ -313,6 +231,88 @@ class MultiModelIndianAddressNER:
|
|
313 |
})
|
314 |
|
315 |
return entities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
# Initialize the multi-model system
|
318 |
print("Initializing Multi-Model Indian Address NER...")
|
|
|
101 |
entities = self._predict_offset_based(address, tokenizer, model)
|
102 |
|
103 |
model_info = f"Using {model_key} ({self.models_config[model_key]['description']})"
|
104 |
+
return entities, model_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
except Exception as e:
|
107 |
return {}, f"Error with {model_key}: {str(e)}"
|
|
|
231 |
})
|
232 |
|
233 |
return entities
|
234 |
+
|
235 |
+
def group_entities_sentencepiece(self, tokens, labels, confidences):
|
236 |
+
"""Group entities for SentencePiece tokenization (IndicBERT) with proper text reconstruction"""
|
237 |
+
entities = {}
|
238 |
+
current_entity = None
|
239 |
+
|
240 |
+
for i, (token, label, conf) in enumerate(zip(tokens, labels, confidences)):
|
241 |
+
if token in ["<s>", "</s>", "<pad>", "<unk>"]:
|
242 |
+
continue
|
243 |
+
|
244 |
+
if label.startswith("B-"):
|
245 |
+
# Save previous entity
|
246 |
+
if current_entity:
|
247 |
+
entity_type = current_entity["type"]
|
248 |
+
if entity_type not in entities:
|
249 |
+
entities[entity_type] = []
|
250 |
+
|
251 |
+
# Clean up the text by removing SentencePiece markers and extra spaces
|
252 |
+
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
253 |
+
entities[entity_type].append({
|
254 |
+
"text": clean_text,
|
255 |
+
"confidence": current_entity["confidence"]
|
256 |
+
})
|
257 |
+
|
258 |
+
# Start new entity - handle SentencePiece format
|
259 |
+
entity_type = label[2:] # Remove "B-"
|
260 |
+
clean_token = token.replace("β", " ").strip()
|
261 |
+
current_entity = {
|
262 |
+
"type": entity_type,
|
263 |
+
"text": clean_token,
|
264 |
+
"confidence": conf
|
265 |
+
}
|
266 |
+
|
267 |
+
elif label.startswith("I-") and current_entity:
|
268 |
+
# Continue current entity
|
269 |
+
entity_type = label[2:] # Remove "I-"
|
270 |
+
if entity_type == current_entity["type"]:
|
271 |
+
# Handle SentencePiece subword continuation
|
272 |
+
if token.startswith("β"):
|
273 |
+
# New word boundary
|
274 |
+
current_entity["text"] += " " + token.replace("β", "")
|
275 |
+
else:
|
276 |
+
# Subword continuation
|
277 |
+
current_entity["text"] += token
|
278 |
+
current_entity["confidence"] = (current_entity["confidence"] + conf) / 2
|
279 |
+
|
280 |
+
elif label == "O" and current_entity:
|
281 |
+
# End current entity
|
282 |
+
entity_type = current_entity["type"]
|
283 |
+
if entity_type not in entities:
|
284 |
+
entities[entity_type] = []
|
285 |
+
|
286 |
+
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
287 |
+
entities[entity_type].append({
|
288 |
+
"text": clean_text,
|
289 |
+
"confidence": current_entity["confidence"]
|
290 |
+
})
|
291 |
+
current_entity = None
|
292 |
+
|
293 |
+
# Add final entity if exists
|
294 |
+
if current_entity:
|
295 |
+
entity_type = current_entity["type"]
|
296 |
+
if entity_type not in entities:
|
297 |
+
entities[entity_type] = []
|
298 |
+
|
299 |
+
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
300 |
+
entities[entity_type].append({
|
301 |
+
"text": clean_text,
|
302 |
+
"confidence": current_entity["confidence"]
|
303 |
+
})
|
304 |
+
|
305 |
+
return entities
|
306 |
+
|
307 |
+
def _clean_sentencepiece_text(self, text):
|
308 |
+
"""Clean SentencePiece text by removing markers and fixing spacing"""
|
309 |
+
# Remove SentencePiece markers
|
310 |
+
clean_text = text.replace("β", " ")
|
311 |
+
# Remove extra spaces and clean up
|
312 |
+
clean_text = " ".join(clean_text.split())
|
313 |
+
# Remove trailing commas and spaces
|
314 |
+
clean_text = clean_text.strip().rstrip(",").strip()
|
315 |
+
return clean_text
|
316 |
|
317 |
# Initialize the multi-model system
|
318 |
print("Initializing Multi-Model Indian Address NER...")
|