File size: 16,353 Bytes
28372d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6952bc9
28372d0
 
 
 
 
 
 
6952bc9
28372d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6952bc9
 
 
 
28372d0
 
 
 
 
6952bc9
28372d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6952bc9
28372d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6952bc9
28372d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6952bc9
 
 
 
 
 
 
28372d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import warnings
warnings.filterwarnings("ignore")

class LlamaAddressCompletion:
    def __init__(self):
        self.model_name = "shiprocket-ai/open-llama-1b-address-completion"
        self.model = None
        self.tokenizer = None
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.load_model()
    
    def load_model(self):
        """Load the Llama model and tokenizer"""
        try:
            print("Loading Llama 3.2-1B Address Completion model...")
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            
            # Load model with appropriate settings for the space
            self.model = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                device_map="auto" if torch.cuda.is_available() else None,
                trust_remote_code=True
            )
            
            if not torch.cuda.is_available():
                self.model = self.model.to(self.device)
            
            self.model.eval()
            print("βœ… Model loaded successfully!")
            
        except Exception as e:
            print(f"❌ Error loading model: {str(e)}")
            raise e
    
    def extract_address_components(self, address, max_new_tokens=150):
        """Extract address components using the model"""
        if not address.strip():
            return "Please provide an address to extract components from."
        
        try:
            # Format prompt for Llama 3.2-1B-Instruct
            prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>

Extract address components from: {address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

"""
            
            # Tokenize
            inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
            
            # Move inputs to the same device as the model
            device = next(self.model.parameters()).device
            inputs = {k: v.to(device) for k, v in inputs.items()}
            
            # Generate
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=max_new_tokens,
                    temperature=0.1,
                    top_p=0.9,
                    do_sample=True,
                    pad_token_id=self.tokenizer.eos_token_id,
                    repetition_penalty=1.05
                )
            
            # Decode only the new tokens
            input_length = inputs['input_ids'].shape[1]
            generated_tokens = outputs[0][input_length:]
            response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
            
            return response.strip()
            
        except Exception as e:
            return f"Error processing address: {str(e)}"
    
    def complete_partial_address(self, partial_address, max_new_tokens=100):
        """Complete a partial address"""
        if not partial_address.strip():
            return "Please provide a partial address to complete."
        
        try:
            # Format prompt for address completion
            prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>

Complete this partial address: {partial_address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

"""
            
            # Tokenize
            inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
            
            # Move inputs to the same device as the model
            device = next(self.model.parameters()).device
            inputs = {k: v.to(device) for k, v in inputs.items()}
            
            # Generate
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=max_new_tokens,
                    temperature=0.2,
                    top_p=0.9,
                    do_sample=True,
                    pad_token_id=self.tokenizer.eos_token_id,
                    repetition_penalty=1.05
                )
            
            # Decode only the new tokens
            input_length = inputs['input_ids'].shape[1]
            generated_tokens = outputs[0][input_length:]
            response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
            
            return response.strip()
            
        except Exception as e:
            return f"Error completing address: {str(e)}"
    
    def standardize_address(self, address, max_new_tokens=150):
        """Standardize an address format"""
        if not address.strip():
            return "Please provide an address to standardize."
        
        try:
            # Format prompt for address standardization
            prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>

Standardize this address into proper format: {address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

"""
            
            # Tokenize
            inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
            
            # Move inputs to the same device as the model
            device = next(self.model.parameters()).device
            inputs = {k: v.to(device) for k, v in inputs.items()}
            
            # Generate
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=max_new_tokens,
                    temperature=0.1,
                    top_p=0.9,
                    do_sample=True,
                    pad_token_id=self.tokenizer.eos_token_id,
                    repetition_penalty=1.05
                )
            
            # Decode only the new tokens
            input_length = inputs['input_ids'].shape[1]
            generated_tokens = outputs[0][input_length:]
            response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
            
            return response.strip()
            
        except Exception as e:
            return f"Error standardizing address: {str(e)}"

# Initialize the model
print("Initializing Llama Address Completion system...")
try:
    llama_system = LlamaAddressCompletion()
    print("System ready!")
except Exception as e:
    print(f"Failed to initialize system: {e}")
    llama_system = None

def extract_components_interface(address_text):
    """Interface function for component extraction"""
    if llama_system is None:
        return "❌ Model not loaded. Please check the logs."
    
    result = llama_system.extract_address_components(address_text)
    return f"**Input:** {address_text}\n\n**Extracted Components:**\n{result}"

def complete_address_interface(partial_address):
    """Interface function for address completion"""
    if llama_system is None:
        return "❌ Model not loaded. Please check the logs."
    
    result = llama_system.complete_partial_address(partial_address)
    return f"**Partial Address:** {partial_address}\n\n**Completed Address:**\n{result}\n\n*⚠️ Note: This feature has limited training data and results may vary in quality.*"

def standardize_address_interface(address_text):
    """Interface function for address standardization"""
    if llama_system is None:
        return "❌ Model not loaded. Please check the logs."
    
    result = llama_system.standardize_address(address_text)
    return f"**Original:** {address_text}\n\n**Standardized:**\n{result}\n\n*⚠️ Note: This feature has limited training data and results may vary in quality.*"

# Sample data
sample_addresses = [
    "C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101",
    "Villa 141, Geown Oasis, V Kallahalli, Off Sarjapur, Bengaluru, Karnataka, 562125",
    "E401 Supertech Icon Indrapam 201301 UP",
    "Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
    "Flat 201, MG Road, Bangalore, Karnataka, 560001"
]

partial_addresses = [
    "C-704, Gayatri Shivam, Thakur Complex",
    "Villa 141, Geown Oasis, V Kallahalli",
    "E401 Supertech Icon",
    "Shop No 123, Sunshine Apartments",
    "Flat 201, MG Road, Bangalore"
]

informal_addresses = [
    "c704 gayatri shivam thakur complex kandivali e 400101",
    "villa141 geown oasis vkallahalli off sarjapur blr kar 562125",
    "e401 supertech icon indrapam up 201301",
    "shop123 sunshine apts andheri w mumbai 400058"
]

# Create Gradio interface
with gr.Blocks(title="Llama Address Intelligence", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ¦™ Llama 3.2-1B Address Intelligence
    
    Powered by a fine-tuned Llama 3.2-1B model specialized for Indian address processing. 
    
    **⭐ Best Performance**: Entity extraction from complete addresses  
    **⚠️ Limited Performance**: Address completion and standardization (limited training data)
    
    **Model:** [shiprocket-ai/open-llama-1b-address-completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion)
    """)
    
    with gr.Tab("πŸ“‹ Extract Components"):
        gr.Markdown("⭐ **BEST PERFORMANCE** - Extract structured components from complete addresses")
        with gr.Row():
            with gr.Column(scale=1):
                extract_input = gr.Textbox(
                    label="Enter Address",
                    placeholder="e.g., C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101",
                    lines=3
                )
                extract_btn = gr.Button("πŸ” Extract Components", variant="primary")
                
                gr.Markdown("### Sample Addresses:")
                extract_samples = []
                for addr in sample_addresses:
                    btn = gr.Button(addr, size="sm")
                    btn.click(fn=lambda x=addr: x, outputs=extract_input)
                    extract_samples.append(btn)
            
            with gr.Column(scale=1):
                extract_output = gr.Markdown(
                    value="Enter an address and click 'Extract Components' to see structured breakdown."
                )
        
        extract_btn.click(
            fn=extract_components_interface,
            inputs=extract_input,
            outputs=extract_output
        )
        
        extract_input.submit(
            fn=extract_components_interface,
            inputs=extract_input,
            outputs=extract_output
        )
    
    with gr.Tab("✨ Complete Address"):
        gr.Markdown("⚠️ **EXPERIMENTAL** - Complete partial addresses (limited training data - results may vary)")
        with gr.Row():
            with gr.Column(scale=1):
                complete_input = gr.Textbox(
                    label="Enter Partial Address",
                    placeholder="e.g., C-704, Gayatri Shivam, Thakur Complex",
                    lines=3
                )
                complete_btn = gr.Button("πŸš€ Complete Address", variant="primary")
                
                gr.Markdown("### Sample Partial Addresses:")
                complete_samples = []
                for addr in partial_addresses:
                    btn = gr.Button(addr, size="sm")
                    btn.click(fn=lambda x=addr: x, outputs=complete_input)
                    complete_samples.append(btn)
            
            with gr.Column(scale=1):
                complete_output = gr.Markdown(
                    value="Enter a partial address and click 'Complete Address' to see the AI completion."
                )
        
        complete_btn.click(
            fn=complete_address_interface,
            inputs=complete_input,
            outputs=complete_output
        )
        
        complete_input.submit(
            fn=complete_address_interface,
            inputs=complete_input,
            outputs=complete_output
        )
    
    with gr.Tab("πŸ“ Standardize Format"):
        gr.Markdown("⚠️ **EXPERIMENTAL** - Convert informal addresses to standardized format (limited training data - results may vary)")
        with gr.Row():
            with gr.Column(scale=1):
                standardize_input = gr.Textbox(
                    label="Enter Informal Address",
                    placeholder="e.g., c704 gayatri shivam thakur complex kandivali e 400101",
                    lines=3
                )
                standardize_btn = gr.Button("πŸ“ Standardize Format", variant="primary")
                
                gr.Markdown("### Sample Informal Addresses:")
                standardize_samples = []
                for addr in informal_addresses:
                    btn = gr.Button(addr, size="sm")
                    btn.click(fn=lambda x=addr: x, outputs=standardize_input)
                    standardize_samples.append(btn)
            
            with gr.Column(scale=1):
                standardize_output = gr.Markdown(
                    value="Enter an informal address and click 'Standardize Format' to see the cleaned version."
                )
        
        standardize_btn.click(
            fn=standardize_address_interface,
            inputs=standardize_input,
            outputs=standardize_output
        )
        
        standardize_input.submit(
            fn=standardize_address_interface,
            inputs=standardize_input,
            outputs=standardize_output
        )
    
    with gr.Tab("ℹ️ Model Information"):
        gr.Markdown("""
        ## πŸ¦™ About Llama 3.2-1B Address Completion
        
        ### Model Specifications
        - **Base Model**: meta-llama/Llama-3.2-1B-Instruct
        - **Parameters**: 1.24B parameters
        - **Model Size**: ~2.47GB
        - **Architecture**: Causal Language Model (Autoregressive)
        - **Max Context**: 131,072 tokens
        - **Precision**: FP16 for GPU, FP32 for CPU
        
        ### Key Features
        - **Lightweight**: Only 1B parameters for fast inference
        - **Specialized**: Fine-tuned specifically for Indian addresses
        - **Versatile**: Handles extraction, completion, and standardization
        - **Efficient**: Optimized for real-time applications
        - **Context-Aware**: Understands relationships between address components
        
        ### Supported Address Components
        - **Building Names**: Apartments, complexes, towers, malls
        - **Localities**: Areas, neighborhoods, sectors  
        - **Pincodes**: 6-digit Indian postal codes
        - **Cities**: Major and minor Indian cities
        - **States**: All Indian states and union territories
        - **Sub-localities**: Sectors, phases, blocks
        - **Road Names**: Streets, lanes, main roads
        - **Landmarks**: Notable reference points
        
        ### Performance Notes
        - **⭐ Entity Extraction**: Excellent performance - primary use case
        - **⚠️ Address Completion**: Limited training data - experimental feature
        - **⚠️ Format Standardization**: Limited training data - experimental feature
        
        **Recommendation**: Use this model primarily for address component extraction.
        
        ### Use Cases
        - **E-commerce**: Auto-complete checkout addresses
        - **Forms**: Intelligent address suggestions
        - **Data Cleaning**: Standardize legacy address databases
        - **Mobile Apps**: On-device address processing
        - **APIs**: Real-time address validation services
        
        ### Performance Tips
        - Use lower temperatures (0.1-0.3) for factual outputs
        - Keep prompts under 512 tokens for optimal speed
        - Process in batches for high-throughput scenarios
        - Works best with Llama chat format prompts
        """)
    
    gr.Markdown("""
    ---
    **Powered by:** [Llama 3.2-1B Address Completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion) | 
    **License:** Apache 2.0 | 
    **Developed by:** Shiprocket AI Team
    
    This model demonstrates the power of lightweight LLMs for specialized address intelligence tasks.
    """)

if __name__ == "__main__":
    demo.launch()