Upload 3 files
Browse files- llama_app.py +390 -0
- llama_readme.md +78 -0
- llama_requirements.txt +6 -0
llama_app.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import warnings
|
5 |
+
warnings.filterwarnings("ignore")
|
6 |
+
|
7 |
+
class LlamaAddressCompletion:
|
8 |
+
def __init__(self):
|
9 |
+
self.model_name = "shiprocket-ai/open-llama-1b-address-completion"
|
10 |
+
self.model = None
|
11 |
+
self.tokenizer = None
|
12 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
self.load_model()
|
14 |
+
|
15 |
+
def load_model(self):
|
16 |
+
"""Load the Llama model and tokenizer"""
|
17 |
+
try:
|
18 |
+
print("Loading Llama 3.2-1B Address Completion model...")
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
20 |
+
|
21 |
+
# Load model with appropriate settings for the space
|
22 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
self.model_name,
|
24 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
25 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
26 |
+
trust_remote_code=True
|
27 |
+
)
|
28 |
+
|
29 |
+
if not torch.cuda.is_available():
|
30 |
+
self.model = self.model.to(self.device)
|
31 |
+
|
32 |
+
self.model.eval()
|
33 |
+
print("✅ Model loaded successfully!")
|
34 |
+
|
35 |
+
except Exception as e:
|
36 |
+
print(f"❌ Error loading model: {str(e)}")
|
37 |
+
raise e
|
38 |
+
|
39 |
+
def extract_address_components(self, address, max_new_tokens=150):
|
40 |
+
"""Extract address components using the model"""
|
41 |
+
if not address.strip():
|
42 |
+
return "Please provide an address to extract components from."
|
43 |
+
|
44 |
+
try:
|
45 |
+
# Format prompt for Llama 3.2-1B-Instruct
|
46 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
47 |
+
|
48 |
+
Extract address components from: {address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
49 |
+
|
50 |
+
"""
|
51 |
+
|
52 |
+
# Tokenize
|
53 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
54 |
+
|
55 |
+
# Move inputs to the same device as the model
|
56 |
+
device = next(self.model.parameters()).device
|
57 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
58 |
+
|
59 |
+
# Generate
|
60 |
+
with torch.no_grad():
|
61 |
+
outputs = self.model.generate(
|
62 |
+
**inputs,
|
63 |
+
max_new_tokens=max_new_tokens,
|
64 |
+
temperature=0.1,
|
65 |
+
top_p=0.9,
|
66 |
+
do_sample=True,
|
67 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
68 |
+
repetition_penalty=1.05
|
69 |
+
)
|
70 |
+
|
71 |
+
# Decode only the new tokens
|
72 |
+
input_length = inputs['input_ids'].shape[1]
|
73 |
+
generated_tokens = outputs[0][input_length:]
|
74 |
+
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
75 |
+
|
76 |
+
return response.strip()
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
return f"Error processing address: {str(e)}"
|
80 |
+
|
81 |
+
def complete_partial_address(self, partial_address, max_new_tokens=100):
|
82 |
+
"""Complete a partial address"""
|
83 |
+
if not partial_address.strip():
|
84 |
+
return "Please provide a partial address to complete."
|
85 |
+
|
86 |
+
try:
|
87 |
+
# Format prompt for address completion
|
88 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
89 |
+
|
90 |
+
Complete this partial address: {partial_address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
91 |
+
|
92 |
+
"""
|
93 |
+
|
94 |
+
# Tokenize
|
95 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
96 |
+
|
97 |
+
# Move inputs to the same device as the model
|
98 |
+
device = next(self.model.parameters()).device
|
99 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
100 |
+
|
101 |
+
# Generate
|
102 |
+
with torch.no_grad():
|
103 |
+
outputs = self.model.generate(
|
104 |
+
**inputs,
|
105 |
+
max_new_tokens=max_new_tokens,
|
106 |
+
temperature=0.2,
|
107 |
+
top_p=0.9,
|
108 |
+
do_sample=True,
|
109 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
110 |
+
repetition_penalty=1.05
|
111 |
+
)
|
112 |
+
|
113 |
+
# Decode only the new tokens
|
114 |
+
input_length = inputs['input_ids'].shape[1]
|
115 |
+
generated_tokens = outputs[0][input_length:]
|
116 |
+
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
117 |
+
|
118 |
+
return response.strip()
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
return f"Error completing address: {str(e)}"
|
122 |
+
|
123 |
+
def standardize_address(self, address, max_new_tokens=150):
|
124 |
+
"""Standardize an address format"""
|
125 |
+
if not address.strip():
|
126 |
+
return "Please provide an address to standardize."
|
127 |
+
|
128 |
+
try:
|
129 |
+
# Format prompt for address standardization
|
130 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
131 |
+
|
132 |
+
Standardize this address into proper format: {address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
133 |
+
|
134 |
+
"""
|
135 |
+
|
136 |
+
# Tokenize
|
137 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
138 |
+
|
139 |
+
# Move inputs to the same device as the model
|
140 |
+
device = next(self.model.parameters()).device
|
141 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
142 |
+
|
143 |
+
# Generate
|
144 |
+
with torch.no_grad():
|
145 |
+
outputs = self.model.generate(
|
146 |
+
**inputs,
|
147 |
+
max_new_tokens=max_new_tokens,
|
148 |
+
temperature=0.1,
|
149 |
+
top_p=0.9,
|
150 |
+
do_sample=True,
|
151 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
152 |
+
repetition_penalty=1.05
|
153 |
+
)
|
154 |
+
|
155 |
+
# Decode only the new tokens
|
156 |
+
input_length = inputs['input_ids'].shape[1]
|
157 |
+
generated_tokens = outputs[0][input_length:]
|
158 |
+
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
159 |
+
|
160 |
+
return response.strip()
|
161 |
+
|
162 |
+
except Exception as e:
|
163 |
+
return f"Error standardizing address: {str(e)}"
|
164 |
+
|
165 |
+
# Initialize the model
|
166 |
+
print("Initializing Llama Address Completion system...")
|
167 |
+
try:
|
168 |
+
llama_system = LlamaAddressCompletion()
|
169 |
+
print("System ready!")
|
170 |
+
except Exception as e:
|
171 |
+
print(f"Failed to initialize system: {e}")
|
172 |
+
llama_system = None
|
173 |
+
|
174 |
+
def extract_components_interface(address_text):
|
175 |
+
"""Interface function for component extraction"""
|
176 |
+
if llama_system is None:
|
177 |
+
return "❌ Model not loaded. Please check the logs."
|
178 |
+
|
179 |
+
result = llama_system.extract_address_components(address_text)
|
180 |
+
return f"**Input:** {address_text}\n\n**Extracted Components:**\n{result}"
|
181 |
+
|
182 |
+
def complete_address_interface(partial_address):
|
183 |
+
"""Interface function for address completion"""
|
184 |
+
if llama_system is None:
|
185 |
+
return "❌ Model not loaded. Please check the logs."
|
186 |
+
|
187 |
+
result = llama_system.complete_partial_address(partial_address)
|
188 |
+
return f"**Partial Address:** {partial_address}\n\n**Completed Address:**\n{result}"
|
189 |
+
|
190 |
+
def standardize_address_interface(address_text):
|
191 |
+
"""Interface function for address standardization"""
|
192 |
+
if llama_system is None:
|
193 |
+
return "❌ Model not loaded. Please check the logs."
|
194 |
+
|
195 |
+
result = llama_system.standardize_address(address_text)
|
196 |
+
return f"**Original:** {address_text}\n\n**Standardized:**\n{result}"
|
197 |
+
|
198 |
+
# Sample data
|
199 |
+
sample_addresses = [
|
200 |
+
"C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101",
|
201 |
+
"Villa 141, Geown Oasis, V Kallahalli, Off Sarjapur, Bengaluru, Karnataka, 562125",
|
202 |
+
"E401 Supertech Icon Indrapam 201301 UP",
|
203 |
+
"Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
|
204 |
+
"Flat 201, MG Road, Bangalore, Karnataka, 560001"
|
205 |
+
]
|
206 |
+
|
207 |
+
partial_addresses = [
|
208 |
+
"C-704, Gayatri Shivam, Thakur Complex",
|
209 |
+
"Villa 141, Geown Oasis, V Kallahalli",
|
210 |
+
"E401 Supertech Icon",
|
211 |
+
"Shop No 123, Sunshine Apartments",
|
212 |
+
"Flat 201, MG Road, Bangalore"
|
213 |
+
]
|
214 |
+
|
215 |
+
informal_addresses = [
|
216 |
+
"c704 gayatri shivam thakur complex kandivali e 400101",
|
217 |
+
"villa141 geown oasis vkallahalli off sarjapur blr kar 562125",
|
218 |
+
"e401 supertech icon indrapam up 201301",
|
219 |
+
"shop123 sunshine apts andheri w mumbai 400058"
|
220 |
+
]
|
221 |
+
|
222 |
+
# Create Gradio interface
|
223 |
+
with gr.Blocks(title="Llama Address Intelligence", theme=gr.themes.Soft()) as demo:
|
224 |
+
gr.Markdown("""
|
225 |
+
# 🦙 Llama 3.2-1B Address Intelligence
|
226 |
+
|
227 |
+
Powered by a fine-tuned Llama 3.2-1B model specialized for Indian address processing. This lightweight model can extract components, complete partial addresses, and standardize informal address formats.
|
228 |
+
|
229 |
+
**Model:** [shiprocket-ai/open-llama-1b-address-completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion)
|
230 |
+
""")
|
231 |
+
|
232 |
+
with gr.Tab("📋 Extract Components"):
|
233 |
+
gr.Markdown("Extract structured components from complete addresses")
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Column(scale=1):
|
236 |
+
extract_input = gr.Textbox(
|
237 |
+
label="Enter Address",
|
238 |
+
placeholder="e.g., C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101",
|
239 |
+
lines=3
|
240 |
+
)
|
241 |
+
extract_btn = gr.Button("🔍 Extract Components", variant="primary")
|
242 |
+
|
243 |
+
gr.Markdown("### Sample Addresses:")
|
244 |
+
extract_samples = []
|
245 |
+
for addr in sample_addresses:
|
246 |
+
btn = gr.Button(addr, size="sm")
|
247 |
+
btn.click(fn=lambda x=addr: x, outputs=extract_input)
|
248 |
+
extract_samples.append(btn)
|
249 |
+
|
250 |
+
with gr.Column(scale=1):
|
251 |
+
extract_output = gr.Markdown(
|
252 |
+
value="Enter an address and click 'Extract Components' to see structured breakdown."
|
253 |
+
)
|
254 |
+
|
255 |
+
extract_btn.click(
|
256 |
+
fn=extract_components_interface,
|
257 |
+
inputs=extract_input,
|
258 |
+
outputs=extract_output
|
259 |
+
)
|
260 |
+
|
261 |
+
extract_input.submit(
|
262 |
+
fn=extract_components_interface,
|
263 |
+
inputs=extract_input,
|
264 |
+
outputs=extract_output
|
265 |
+
)
|
266 |
+
|
267 |
+
with gr.Tab("✨ Complete Address"):
|
268 |
+
gr.Markdown("Complete partial or incomplete addresses using AI")
|
269 |
+
with gr.Row():
|
270 |
+
with gr.Column(scale=1):
|
271 |
+
complete_input = gr.Textbox(
|
272 |
+
label="Enter Partial Address",
|
273 |
+
placeholder="e.g., C-704, Gayatri Shivam, Thakur Complex",
|
274 |
+
lines=3
|
275 |
+
)
|
276 |
+
complete_btn = gr.Button("🚀 Complete Address", variant="primary")
|
277 |
+
|
278 |
+
gr.Markdown("### Sample Partial Addresses:")
|
279 |
+
complete_samples = []
|
280 |
+
for addr in partial_addresses:
|
281 |
+
btn = gr.Button(addr, size="sm")
|
282 |
+
btn.click(fn=lambda x=addr: x, outputs=complete_input)
|
283 |
+
complete_samples.append(btn)
|
284 |
+
|
285 |
+
with gr.Column(scale=1):
|
286 |
+
complete_output = gr.Markdown(
|
287 |
+
value="Enter a partial address and click 'Complete Address' to see the AI completion."
|
288 |
+
)
|
289 |
+
|
290 |
+
complete_btn.click(
|
291 |
+
fn=complete_address_interface,
|
292 |
+
inputs=complete_input,
|
293 |
+
outputs=complete_output
|
294 |
+
)
|
295 |
+
|
296 |
+
complete_input.submit(
|
297 |
+
fn=complete_address_interface,
|
298 |
+
inputs=complete_input,
|
299 |
+
outputs=complete_output
|
300 |
+
)
|
301 |
+
|
302 |
+
with gr.Tab("📐 Standardize Format"):
|
303 |
+
gr.Markdown("Convert informal or messy addresses into proper standardized format")
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column(scale=1):
|
306 |
+
standardize_input = gr.Textbox(
|
307 |
+
label="Enter Informal Address",
|
308 |
+
placeholder="e.g., c704 gayatri shivam thakur complex kandivali e 400101",
|
309 |
+
lines=3
|
310 |
+
)
|
311 |
+
standardize_btn = gr.Button("📏 Standardize Format", variant="primary")
|
312 |
+
|
313 |
+
gr.Markdown("### Sample Informal Addresses:")
|
314 |
+
standardize_samples = []
|
315 |
+
for addr in informal_addresses:
|
316 |
+
btn = gr.Button(addr, size="sm")
|
317 |
+
btn.click(fn=lambda x=addr: x, outputs=standardize_input)
|
318 |
+
standardize_samples.append(btn)
|
319 |
+
|
320 |
+
with gr.Column(scale=1):
|
321 |
+
standardize_output = gr.Markdown(
|
322 |
+
value="Enter an informal address and click 'Standardize Format' to see the cleaned version."
|
323 |
+
)
|
324 |
+
|
325 |
+
standardize_btn.click(
|
326 |
+
fn=standardize_address_interface,
|
327 |
+
inputs=standardize_input,
|
328 |
+
outputs=standardize_output
|
329 |
+
)
|
330 |
+
|
331 |
+
standardize_input.submit(
|
332 |
+
fn=standardize_address_interface,
|
333 |
+
inputs=standardize_input,
|
334 |
+
outputs=standardize_output
|
335 |
+
)
|
336 |
+
|
337 |
+
with gr.Tab("ℹ️ Model Information"):
|
338 |
+
gr.Markdown("""
|
339 |
+
## 🦙 About Llama 3.2-1B Address Completion
|
340 |
+
|
341 |
+
### Model Specifications
|
342 |
+
- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
|
343 |
+
- **Parameters**: 1.24B parameters
|
344 |
+
- **Model Size**: ~2.47GB
|
345 |
+
- **Architecture**: Causal Language Model (Autoregressive)
|
346 |
+
- **Max Context**: 131,072 tokens
|
347 |
+
- **Precision**: FP16 for GPU, FP32 for CPU
|
348 |
+
|
349 |
+
### Key Features
|
350 |
+
- **Lightweight**: Only 1B parameters for fast inference
|
351 |
+
- **Specialized**: Fine-tuned specifically for Indian addresses
|
352 |
+
- **Versatile**: Handles extraction, completion, and standardization
|
353 |
+
- **Efficient**: Optimized for real-time applications
|
354 |
+
- **Context-Aware**: Understands relationships between address components
|
355 |
+
|
356 |
+
### Supported Address Components
|
357 |
+
- **Building Names**: Apartments, complexes, towers, malls
|
358 |
+
- **Localities**: Areas, neighborhoods, sectors
|
359 |
+
- **Pincodes**: 6-digit Indian postal codes
|
360 |
+
- **Cities**: Major and minor Indian cities
|
361 |
+
- **States**: All Indian states and union territories
|
362 |
+
- **Sub-localities**: Sectors, phases, blocks
|
363 |
+
- **Road Names**: Streets, lanes, main roads
|
364 |
+
- **Landmarks**: Notable reference points
|
365 |
+
|
366 |
+
### Use Cases
|
367 |
+
- **E-commerce**: Auto-complete checkout addresses
|
368 |
+
- **Forms**: Intelligent address suggestions
|
369 |
+
- **Data Cleaning**: Standardize legacy address databases
|
370 |
+
- **Mobile Apps**: On-device address processing
|
371 |
+
- **APIs**: Real-time address validation services
|
372 |
+
|
373 |
+
### Performance Tips
|
374 |
+
- Use lower temperatures (0.1-0.3) for factual outputs
|
375 |
+
- Keep prompts under 512 tokens for optimal speed
|
376 |
+
- Process in batches for high-throughput scenarios
|
377 |
+
- Works best with Llama chat format prompts
|
378 |
+
""")
|
379 |
+
|
380 |
+
gr.Markdown("""
|
381 |
+
---
|
382 |
+
**Powered by:** [Llama 3.2-1B Address Completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion) |
|
383 |
+
**License:** Apache 2.0 |
|
384 |
+
**Developed by:** Shiprocket AI Team
|
385 |
+
|
386 |
+
This model demonstrates the power of lightweight LLMs for specialized address intelligence tasks.
|
387 |
+
""")
|
388 |
+
|
389 |
+
if __name__ == "__main__":
|
390 |
+
demo.launch()
|
llama_readme.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Llama Address Intelligence
|
3 |
+
emoji: 🦙
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
# Llama 3.2-1B Address Intelligence Demo
|
14 |
+
|
15 |
+
This Space demonstrates the capabilities of [shiprocket-ai/open-llama-1b-address-completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion), a fine-tuned Llama 3.2-1B model specialized for Indian address processing.
|
16 |
+
|
17 |
+
## What it does
|
18 |
+
|
19 |
+
This application showcases three main capabilities:
|
20 |
+
|
21 |
+
1. **Component Extraction**: Parse addresses into structured components (building, locality, pincode, etc.)
|
22 |
+
2. **Address Completion**: Complete partial or incomplete addresses using AI
|
23 |
+
3. **Format Standardization**: Convert informal addresses to proper standardized format
|
24 |
+
|
25 |
+
## Features
|
26 |
+
|
27 |
+
- **Lightweight**: Only 1.24B parameters for fast inference
|
28 |
+
- **Specialized**: Fine-tuned specifically for Indian address patterns
|
29 |
+
- **Versatile**: Handles multiple address intelligence tasks
|
30 |
+
- **Interactive**: Three separate tabs for different use cases
|
31 |
+
- **Real-time**: Optimized for quick responses
|
32 |
+
|
33 |
+
## How to use
|
34 |
+
|
35 |
+
### Component Extraction
|
36 |
+
1. Go to the "Extract Components" tab
|
37 |
+
2. Enter a complete address
|
38 |
+
3. Click "Extract Components" to see structured breakdown
|
39 |
+
|
40 |
+
### Address Completion
|
41 |
+
1. Go to the "Complete Address" tab
|
42 |
+
2. Enter a partial address
|
43 |
+
3. Click "Complete Address" to see AI completion
|
44 |
+
|
45 |
+
### Format Standardization
|
46 |
+
1. Go to the "Standardize Format" tab
|
47 |
+
2. Enter an informal or messy address
|
48 |
+
3. Click "Standardize Format" to see cleaned version
|
49 |
+
|
50 |
+
## Example addresses
|
51 |
+
|
52 |
+
- **Complete**: C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101
|
53 |
+
- **Partial**: C-704, Gayatri Shivam, Thakur Complex
|
54 |
+
- **Informal**: c704 gayatri shivam thakur complex kandivali e 400101
|
55 |
+
|
56 |
+
## Model Information
|
57 |
+
|
58 |
+
- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
|
59 |
+
- **Parameters**: 1.24B
|
60 |
+
- **Model Size**: ~2.47GB
|
61 |
+
- **Max Context**: 131K tokens
|
62 |
+
- **License**: Apache 2.0
|
63 |
+
|
64 |
+
## Supported Components
|
65 |
+
|
66 |
+
The model can handle:
|
67 |
+
- Building names, localities, pincodes
|
68 |
+
- Cities, states, sub-localities
|
69 |
+
- Road names, landmarks
|
70 |
+
- Various Indian address formats
|
71 |
+
|
72 |
+
## Performance
|
73 |
+
|
74 |
+
Optimized for:
|
75 |
+
- Real-time applications
|
76 |
+
- Mobile/edge deployment
|
77 |
+
- High-throughput processing
|
78 |
+
- Low memory usage
|
llama_requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
transformers>=4.36.0
|
3 |
+
gradio>=4.44.0
|
4 |
+
accelerate>=0.25.0
|
5 |
+
numpy>=1.21.0
|
6 |
+
tokenizers>=0.15.0
|