File size: 2,802 Bytes
28372d0 2e5bf9c 28372d0 2e5bf9c 28372d0 2e5bf9c 28372d0 2e5bf9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
title: Llama Address Intelligence
emoji: 🦙
colorFrom: purple
colorTo: pink
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: apache-2.0
---
# Llama 3.2-1B Address Intelligence Demo
This Space demonstrates the capabilities of [shiprocket-ai/open-llama-1b-address-completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion), a fine-tuned Llama 3.2-1B model specialized for Indian address processing.
## What it does
This application showcases three main capabilities, with varying performance levels:
1. **Component Extraction** ⭐ **BEST PERFORMANCE** - Parse addresses into structured components (building, locality, pincode, etc.)
2. **Address Completion** ⚠️ **LIMITED** - Complete partial addresses (trained on limited data)
3. **Format Standardization** ⚠️ **LIMITED** - Convert informal addresses to standardized format (trained on limited data)
**Note**: This model performs best at **entity extraction**. The completion and standardization features have limited training data and may not always produce optimal results.
## Features
- **Lightweight**: Only 1.24B parameters for fast inference
- **Specialized**: Fine-tuned specifically for Indian address patterns
- **Versatile**: Handles multiple address intelligence tasks
- **Interactive**: Three separate tabs for different use cases
- **Real-time**: Optimized for quick responses
## How to use
### Component Extraction
1. Go to the "Extract Components" tab
2. Enter a complete address
3. Click "Extract Components" to see structured breakdown
### Address Completion
1. Go to the "Complete Address" tab
2. Enter a partial address
3. Click "Complete Address" to see AI completion
### Format Standardization
1. Go to the "Standardize Format" tab
2. Enter an informal or messy address
3. Click "Standardize Format" to see cleaned version
## Example addresses
- **Complete**: C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101
- **Partial**: C-704, Gayatri Shivam, Thakur Complex
- **Informal**: c704 gayatri shivam thakur complex kandivali e 400101
## Model Information
- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
- **Parameters**: 1.24B
- **Model Size**: ~2.47GB
- **Max Context**: 131K tokens
- **License**: Apache 2.0
## Supported Components
The model can handle:
- Building names, localities, pincodes
- Cities, states, sub-localities
- Road names, landmarks
- Various Indian address formats
## Performance Notes
⭐ **Entity Extraction**: Excellent performance - primary use case
⚠️ **Address Completion**: Limited training data - experimental feature
⚠️ **Standardization**: Limited training data - experimental feature
**Recommendation**: Use this model primarily for **address component extraction** where it performs best. |