terapyon's picture
added date filter and comment filter and show date, label refs #5
648f519
raw
history blame
5.73 kB
from datetime import datetime, date, timedelta
from typing import Iterable
import streamlit as st
import torch
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, Range
from config import DB_CONFIG
from model import Issue
@st.cache_resource
def load_embeddings():
model_name = "intfloat/multilingual-e5-large"
model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
encode_kwargs = {"normalize_embeddings": False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
return embeddings
EMBEDDINGS = load_embeddings()
def make_filter_obj(options: list[dict[str]]):
# print(options)
must = []
for option in options:
if "value" in option:
must.append(
FieldCondition(
key=option["key"], match=MatchValue(value=option["value"])
)
)
elif "range" in option:
range_ = option["range"]
must.append(
FieldCondition(
key=option["key"],
range=Range(
gt=range_.get("gt"),
gte=range_.get("gte"),
lt=range_.get("lt"),
lte=range_.get("lte"),
),
)
)
filter = Filter(must=must)
return filter
def get_similay(query: str, filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
docs = db.similarity_search_with_score(
query,
k=20,
filter=filter,
)
return docs
def main(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> Iterable[tuple[Issue, float, str]]:
options = [{"key": "metadata.repo_name", "value": repo_name}]
if start_date is not None and end_date is not None:
options.append(
{
"key": "metadata.created_at",
"range": {
"gte": int(datetime.fromisoformat(str(start_date)).timestamp()),
"lte": int(
datetime.fromisoformat(
str(end_date + timedelta(days=1))
).timestamp()
),
},
}
)
if not include_comments:
options.append({"key": "metadata.type_", "value": "issue"})
filter = make_filter_obj(options=options)
if query_options == "Empty":
query_options = ""
query_str = f"{query_options}{query}"
docs = get_similay(query_str, filter)
for doc, score in docs:
text = doc.page_content
metadata = doc.metadata
# print(metadata)
issue = Issue(
repo_name=repo_name,
id=metadata.get("id"),
title=metadata.get("title"),
created_at=metadata.get("created_at"),
user=metadata.get("user"),
url=metadata.get("url"),
labels=metadata.get("labels"),
type_=metadata.get("type_"),
)
yield issue, score, text
with st.form("my_form"):
st.title("GitHub Issue Search")
query = st.text_input(label="query")
repo_name = st.radio(
options=[
"cpython",
"pyvista",
"plone",
"volto",
"plone.restapi",
"nvda",
"nvdajp",
"cocoa",
],
label="Repo name",
)
query_options = st.radio(
options=[
"query: ",
"query: passage: ",
"Empty",
],
label="Query options",
)
date_min = date(2022, 1, 1)
date_max = date.today()
date_col1, date_col2 = st.columns(2)
start_date = date_col1.date_input(
label="Select a start date",
value=date_min,
format="YYYY-MM-DD",
)
end_date = date_col2.date_input(
label="Select a end date",
value=date_max,
format="YYYY-MM-DD",
)
include_comments = st.checkbox(label="Include Issue comments", value=True)
submitted = st.form_submit_button("Submit")
if submitted:
st.divider()
st.header("Search Results")
st.divider()
with st.spinner("Searching..."):
results = main(
query, repo_name, query_options, start_date, end_date, include_comments
)
for issue, score, text in results:
title = issue.title
url = issue.url
id_ = issue.id
score = round(score, 3)
created_at = datetime.fromtimestamp(issue.created_at)
user = issue.user
labels = issue.labels
is_comment = issue.type_ == "comment"
with st.container():
if not is_comment:
st.subheader(f"#{id_} - {title}")
else:
st.subheader(f"comment with {title}")
st.write(url)
st.write(text)
st.write("score:", score, "Date:", created_at.date(), "User:", user)
st.write(f"{labels=}")
# st.markdown(html, unsafe_allow_html=True)
st.divider()