Spaces:
Sleeping
Sleeping
File size: 5,733 Bytes
648f519 70d7754 648f519 70d7754 648f519 70d7754 648f519 70d7754 648f519 70d7754 5be1a02 648f519 70d7754 648f519 5be1a02 70d7754 648f519 70d7754 5be1a02 70d7754 648f519 70d7754 648f519 70d7754 648f519 70d7754 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
from datetime import datetime, date, timedelta
from typing import Iterable
import streamlit as st
import torch
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, Range
from config import DB_CONFIG
from model import Issue
@st.cache_resource
def load_embeddings():
model_name = "intfloat/multilingual-e5-large"
model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
encode_kwargs = {"normalize_embeddings": False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
return embeddings
EMBEDDINGS = load_embeddings()
def make_filter_obj(options: list[dict[str]]):
# print(options)
must = []
for option in options:
if "value" in option:
must.append(
FieldCondition(
key=option["key"], match=MatchValue(value=option["value"])
)
)
elif "range" in option:
range_ = option["range"]
must.append(
FieldCondition(
key=option["key"],
range=Range(
gt=range_.get("gt"),
gte=range_.get("gte"),
lt=range_.get("lt"),
lte=range_.get("lte"),
),
)
)
filter = Filter(must=must)
return filter
def get_similay(query: str, filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
docs = db.similarity_search_with_score(
query,
k=20,
filter=filter,
)
return docs
def main(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> Iterable[tuple[Issue, float, str]]:
options = [{"key": "metadata.repo_name", "value": repo_name}]
if start_date is not None and end_date is not None:
options.append(
{
"key": "metadata.created_at",
"range": {
"gte": int(datetime.fromisoformat(str(start_date)).timestamp()),
"lte": int(
datetime.fromisoformat(
str(end_date + timedelta(days=1))
).timestamp()
),
},
}
)
if not include_comments:
options.append({"key": "metadata.type_", "value": "issue"})
filter = make_filter_obj(options=options)
if query_options == "Empty":
query_options = ""
query_str = f"{query_options}{query}"
docs = get_similay(query_str, filter)
for doc, score in docs:
text = doc.page_content
metadata = doc.metadata
# print(metadata)
issue = Issue(
repo_name=repo_name,
id=metadata.get("id"),
title=metadata.get("title"),
created_at=metadata.get("created_at"),
user=metadata.get("user"),
url=metadata.get("url"),
labels=metadata.get("labels"),
type_=metadata.get("type_"),
)
yield issue, score, text
with st.form("my_form"):
st.title("GitHub Issue Search")
query = st.text_input(label="query")
repo_name = st.radio(
options=[
"cpython",
"pyvista",
"plone",
"volto",
"plone.restapi",
"nvda",
"nvdajp",
"cocoa",
],
label="Repo name",
)
query_options = st.radio(
options=[
"query: ",
"query: passage: ",
"Empty",
],
label="Query options",
)
date_min = date(2022, 1, 1)
date_max = date.today()
date_col1, date_col2 = st.columns(2)
start_date = date_col1.date_input(
label="Select a start date",
value=date_min,
format="YYYY-MM-DD",
)
end_date = date_col2.date_input(
label="Select a end date",
value=date_max,
format="YYYY-MM-DD",
)
include_comments = st.checkbox(label="Include Issue comments", value=True)
submitted = st.form_submit_button("Submit")
if submitted:
st.divider()
st.header("Search Results")
st.divider()
with st.spinner("Searching..."):
results = main(
query, repo_name, query_options, start_date, end_date, include_comments
)
for issue, score, text in results:
title = issue.title
url = issue.url
id_ = issue.id
score = round(score, 3)
created_at = datetime.fromtimestamp(issue.created_at)
user = issue.user
labels = issue.labels
is_comment = issue.type_ == "comment"
with st.container():
if not is_comment:
st.subheader(f"#{id_} - {title}")
else:
st.subheader(f"comment with {title}")
st.write(url)
st.write(text)
st.write("score:", score, "Date:", created_at.date(), "User:", user)
st.write(f"{labels=}")
# st.markdown(html, unsafe_allow_html=True)
st.divider()
|