File size: 5,733 Bytes
648f519
70d7754
 
 
 
 
 
648f519
70d7754
648f519
70d7754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648f519
70d7754
 
648f519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70d7754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be1a02
648f519
 
 
 
70d7754
648f519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be1a02
 
 
 
70d7754
 
 
 
648f519
 
 
 
 
 
 
 
 
 
 
70d7754
 
 
 
 
 
5be1a02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70d7754
648f519
 
 
 
 
 
 
 
 
 
 
 
 
 
70d7754
 
 
 
 
 
 
648f519
 
 
 
 
 
 
 
 
 
 
 
70d7754
 
 
 
 
 
 
648f519
 
70d7754
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from datetime import datetime, date, timedelta
from typing import Iterable
import streamlit as st
import torch
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, Range
from config import DB_CONFIG
from model import Issue


@st.cache_resource
def load_embeddings():
    model_name = "intfloat/multilingual-e5-large"
    model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
    encode_kwargs = {"normalize_embeddings": False}
    embeddings = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs,
    )
    return embeddings


EMBEDDINGS = load_embeddings()


def make_filter_obj(options: list[dict[str]]):
    # print(options)
    must = []
    for option in options:
        if "value" in option:
            must.append(
                FieldCondition(
                    key=option["key"], match=MatchValue(value=option["value"])
                )
            )
        elif "range" in option:
            range_ = option["range"]
            must.append(
                FieldCondition(
                    key=option["key"],
                    range=Range(
                        gt=range_.get("gt"),
                        gte=range_.get("gte"),
                        lt=range_.get("lt"),
                        lte=range_.get("lte"),
                    ),
                )
            )
    filter = Filter(must=must)
    return filter


def get_similay(query: str, filter: Filter):
    db_url, db_api_key, db_collection_name = DB_CONFIG
    client = QdrantClient(url=db_url, api_key=db_api_key)
    db = Qdrant(
        client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
    )
    docs = db.similarity_search_with_score(
        query,
        k=20,
        filter=filter,
    )
    return docs


def main(
    query: str,
    repo_name: str,
    query_options: str,
    start_date: date,
    end_date: date,
    include_comments: bool,
) -> Iterable[tuple[Issue, float, str]]:
    options = [{"key": "metadata.repo_name", "value": repo_name}]
    if start_date is not None and end_date is not None:
        options.append(
            {
                "key": "metadata.created_at",
                "range": {
                    "gte": int(datetime.fromisoformat(str(start_date)).timestamp()),
                    "lte": int(
                        datetime.fromisoformat(
                            str(end_date + timedelta(days=1))
                        ).timestamp()
                    ),
                },
            }
        )
    if not include_comments:
        options.append({"key": "metadata.type_", "value": "issue"})
    filter = make_filter_obj(options=options)
    if query_options == "Empty":
        query_options = ""
    query_str = f"{query_options}{query}"
    docs = get_similay(query_str, filter)
    for doc, score in docs:
        text = doc.page_content
        metadata = doc.metadata
        # print(metadata)
        issue = Issue(
            repo_name=repo_name,
            id=metadata.get("id"),
            title=metadata.get("title"),
            created_at=metadata.get("created_at"),
            user=metadata.get("user"),
            url=metadata.get("url"),
            labels=metadata.get("labels"),
            type_=metadata.get("type_"),
        )
        yield issue, score, text


with st.form("my_form"):
    st.title("GitHub Issue Search")
    query = st.text_input(label="query")
    repo_name = st.radio(
        options=[
            "cpython",
            "pyvista",
            "plone",
            "volto",
            "plone.restapi",
            "nvda",
            "nvdajp",
            "cocoa",
        ],
        label="Repo name",
    )
    query_options = st.radio(
        options=[
            "query: ",
            "query: passage: ",
            "Empty",
        ],
        label="Query options",
    )
    date_min = date(2022, 1, 1)
    date_max = date.today()
    date_col1, date_col2 = st.columns(2)
    start_date = date_col1.date_input(
        label="Select a start date",
        value=date_min,
        format="YYYY-MM-DD",
    )
    end_date = date_col2.date_input(
        label="Select a end date",
        value=date_max,
        format="YYYY-MM-DD",
    )
    include_comments = st.checkbox(label="Include Issue comments", value=True)

    submitted = st.form_submit_button("Submit")
    if submitted:
        st.divider()
        st.header("Search Results")
        st.divider()
        with st.spinner("Searching..."):
            results = main(
                query, repo_name, query_options, start_date, end_date, include_comments
            )
            for issue, score, text in results:
                title = issue.title
                url = issue.url
                id_ = issue.id
                score = round(score, 3)
                created_at = datetime.fromtimestamp(issue.created_at)
                user = issue.user
                labels = issue.labels
                is_comment = issue.type_ == "comment"
                with st.container():
                    if not is_comment:
                        st.subheader(f"#{id_} - {title}")
                    else:
                        st.subheader(f"comment with {title}")
                    st.write(url)
                    st.write(text)
                    st.write("score:", score, "Date:", created_at.date(), "User:", user)
                    st.write(f"{labels=}")
                    # st.markdown(html, unsafe_allow_html=True)
                    st.divider()