terapyon's picture
support RAG refs #5
1f4ac35
raw
history blame
8.7 kB
from time import time
from datetime import datetime, date, timedelta
from typing import Iterable
import streamlit as st
import torch
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, Range
from langchain.chains import RetrievalQA
from openai.error import InvalidRequestError
from langchain.chat_models import ChatOpenAI
from config import DB_CONFIG
from model import Issue
@st.cache_resource
def load_embeddings():
model_name = "intfloat/multilingual-e5-large"
model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
encode_kwargs = {"normalize_embeddings": False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
return embeddings
@st.cache_resource
def llm_model(model="gpt-3.5-turbo", temperature=0.2):
llm = ChatOpenAI(model=model, temperature=temperature)
return llm
EMBEDDINGS = load_embeddings()
LLM = llm_model()
def make_filter_obj(options: list[dict[str]]):
# print(options)
must = []
for option in options:
if "value" in option:
must.append(
FieldCondition(
key=option["key"], match=MatchValue(value=option["value"])
)
)
elif "range" in option:
range_ = option["range"]
must.append(
FieldCondition(
key=option["key"],
range=Range(
gt=range_.get("gt"),
gte=range_.get("gte"),
lt=range_.get("lt"),
lte=range_.get("lte"),
),
)
)
filter = Filter(must=must)
return filter
def get_similay(query: str, filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
docs = db.similarity_search_with_score(
query,
k=20,
filter=filter,
)
return docs
def get_retrieval_qa(filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
retriever = db.as_retriever(
search_kwargs={
"filter": filter,
}
)
result = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
)
return result
def _get_related_url(metadata) -> Iterable[str]:
urls = set()
for m in metadata:
url = m["url"]
if url in urls:
continue
urls.add(url)
created_at = datetime.fromtimestamp(m["created_at"])
# print(m)
yield f'<p>URL: <a href="{url}">{url}</a> (created: {created_at:%Y-%m-%d})</p>'
def _get_query_str_filter(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> tuple[str, Filter]:
options = [{"key": "metadata.repo_name", "value": repo_name}]
if start_date is not None and end_date is not None:
options.append(
{
"key": "metadata.created_at",
"range": {
"gte": int(datetime.fromisoformat(str(start_date)).timestamp()),
"lte": int(
datetime.fromisoformat(
str(end_date + timedelta(days=1))
).timestamp()
),
},
}
)
if not include_comments:
options.append({"key": "metadata.type_", "value": "issue"})
filter = make_filter_obj(options=options)
if query_options == "Empty":
query_options = ""
query_str = f"{query_options}{query}"
return query_str, filter
def run_qa(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> tuple[str, str]:
now = time()
query_str, filter = _get_query_str_filter(
query, repo_name, query_options, start_date, end_date, include_comments
)
qa = get_retrieval_qa(filter)
try:
result = qa(query_str)
except InvalidRequestError as e:
return "ๅ›ž็ญ”ใŒ่ฆ‹ใคใ‹ใ‚Šใพใ›ใ‚“ใงใ—ใŸใ€‚ๅˆฅใช่ณชๅ•ใ‚’ใ—ใฆใฟใฆใใ ใ•ใ„", str(e)
else:
metadata = [s.metadata for s in result["source_documents"]]
sec_html = f"<p>ๅฎŸ่กŒๆ™‚้–“: {(time() - now):.2f}็ง’</p>"
html = "<div>" + sec_html + "\n".join(_get_related_url(metadata)) + "</div>"
return result["result"], html
def run_search(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> Iterable[tuple[Issue, float, str]]:
query_str, filter = _get_query_str_filter(
query, repo_name, query_options, start_date, end_date, include_comments
)
docs = get_similay(query_str, filter)
for doc, score in docs:
text = doc.page_content
metadata = doc.metadata
# print(metadata)
issue = Issue(
repo_name=repo_name,
id=metadata.get("id"),
title=metadata.get("title"),
created_at=metadata.get("created_at"),
user=metadata.get("user"),
url=metadata.get("url"),
labels=metadata.get("labels"),
type_=metadata.get("type_"),
)
yield issue, score, text
with st.form("my_form"):
st.title("GitHub Issue Search")
query = st.text_input(label="query")
repo_name = st.radio(
options=[
"cpython",
"pyvista",
"plone",
"volto",
"plone.restapi",
"nvda",
"nvdajp",
"cocoa",
],
label="Repo name",
)
query_options = st.radio(
options=[
"query: ",
"query: passage: ",
"Empty",
],
label="Query options",
)
date_min = date(2022, 1, 1)
date_max = date.today()
date_col1, date_col2 = st.columns(2)
start_date = date_col1.date_input(
label="Select a start date",
value=date_min,
format="YYYY-MM-DD",
)
end_date = date_col2.date_input(
label="Select a end date",
value=date_max,
format="YYYY-MM-DD",
)
include_comments = st.checkbox(label="Include Issue comments", value=True)
submit_col1, submit_col2 = st.columns(2)
searched = submit_col1.form_submit_button("Search")
if searched:
st.divider()
st.header("Search Results")
st.divider()
with st.spinner("Searching..."):
results = run_search(
query, repo_name, query_options, start_date, end_date, include_comments
)
for issue, score, text in results:
title = issue.title
url = issue.url
id_ = issue.id
score = round(score, 3)
created_at = datetime.fromtimestamp(issue.created_at)
user = issue.user
labels = issue.labels
is_comment = issue.type_ == "comment"
with st.container():
if not is_comment:
st.subheader(f"#{id_} - {title}")
else:
st.subheader(f"comment with {title}")
st.write(url)
st.write(text)
st.write("score:", score, "Date:", created_at.date(), "User:", user)
st.write(f"{labels=}")
# st.markdown(html, unsafe_allow_html=True)
st.divider()
qa_searched = submit_col2.form_submit_button("QA Search by OpenAI")
if qa_searched:
st.divider()
st.header("QA Search Results by OpenAI GPT-3")
st.divider()
with st.spinner("QA Searching..."):
results = run_qa(
query, repo_name, query_options, start_date, end_date, include_comments
)
answer, html = results
with st.container():
st.write(answer)
st.markdown(html, unsafe_allow_html=True)
st.divider()