Spaces:
Sleeping
Sleeping
File size: 8,702 Bytes
1f4ac35 648f519 70d7754 648f519 1f4ac35 70d7754 648f519 70d7754 1f4ac35 70d7754 1f4ac35 70d7754 648f519 70d7754 648f519 70d7754 1f4ac35 70d7754 5be1a02 648f519 1f4ac35 70d7754 648f519 5be1a02 1f4ac35 5be1a02 70d7754 648f519 70d7754 5be1a02 70d7754 648f519 70d7754 1f4ac35 70d7754 1f4ac35 648f519 70d7754 648f519 70d7754 1f4ac35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from time import time
from datetime import datetime, date, timedelta
from typing import Iterable
import streamlit as st
import torch
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, Range
from langchain.chains import RetrievalQA
from openai.error import InvalidRequestError
from langchain.chat_models import ChatOpenAI
from config import DB_CONFIG
from model import Issue
@st.cache_resource
def load_embeddings():
model_name = "intfloat/multilingual-e5-large"
model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
encode_kwargs = {"normalize_embeddings": False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
return embeddings
@st.cache_resource
def llm_model(model="gpt-3.5-turbo", temperature=0.2):
llm = ChatOpenAI(model=model, temperature=temperature)
return llm
EMBEDDINGS = load_embeddings()
LLM = llm_model()
def make_filter_obj(options: list[dict[str]]):
# print(options)
must = []
for option in options:
if "value" in option:
must.append(
FieldCondition(
key=option["key"], match=MatchValue(value=option["value"])
)
)
elif "range" in option:
range_ = option["range"]
must.append(
FieldCondition(
key=option["key"],
range=Range(
gt=range_.get("gt"),
gte=range_.get("gte"),
lt=range_.get("lt"),
lte=range_.get("lte"),
),
)
)
filter = Filter(must=must)
return filter
def get_similay(query: str, filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
docs = db.similarity_search_with_score(
query,
k=20,
filter=filter,
)
return docs
def get_retrieval_qa(filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
retriever = db.as_retriever(
search_kwargs={
"filter": filter,
}
)
result = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
)
return result
def _get_related_url(metadata) -> Iterable[str]:
urls = set()
for m in metadata:
url = m["url"]
if url in urls:
continue
urls.add(url)
created_at = datetime.fromtimestamp(m["created_at"])
# print(m)
yield f'<p>URL: <a href="{url}">{url}</a> (created: {created_at:%Y-%m-%d})</p>'
def _get_query_str_filter(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> tuple[str, Filter]:
options = [{"key": "metadata.repo_name", "value": repo_name}]
if start_date is not None and end_date is not None:
options.append(
{
"key": "metadata.created_at",
"range": {
"gte": int(datetime.fromisoformat(str(start_date)).timestamp()),
"lte": int(
datetime.fromisoformat(
str(end_date + timedelta(days=1))
).timestamp()
),
},
}
)
if not include_comments:
options.append({"key": "metadata.type_", "value": "issue"})
filter = make_filter_obj(options=options)
if query_options == "Empty":
query_options = ""
query_str = f"{query_options}{query}"
return query_str, filter
def run_qa(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> tuple[str, str]:
now = time()
query_str, filter = _get_query_str_filter(
query, repo_name, query_options, start_date, end_date, include_comments
)
qa = get_retrieval_qa(filter)
try:
result = qa(query_str)
except InvalidRequestError as e:
return "ๅ็ญใ่ฆใคใใใพใใใงใใใๅฅใช่ณชๅใใใฆใฟใฆใใ ใใ", str(e)
else:
metadata = [s.metadata for s in result["source_documents"]]
sec_html = f"<p>ๅฎ่กๆ้: {(time() - now):.2f}็ง</p>"
html = "<div>" + sec_html + "\n".join(_get_related_url(metadata)) + "</div>"
return result["result"], html
def run_search(
query: str,
repo_name: str,
query_options: str,
start_date: date,
end_date: date,
include_comments: bool,
) -> Iterable[tuple[Issue, float, str]]:
query_str, filter = _get_query_str_filter(
query, repo_name, query_options, start_date, end_date, include_comments
)
docs = get_similay(query_str, filter)
for doc, score in docs:
text = doc.page_content
metadata = doc.metadata
# print(metadata)
issue = Issue(
repo_name=repo_name,
id=metadata.get("id"),
title=metadata.get("title"),
created_at=metadata.get("created_at"),
user=metadata.get("user"),
url=metadata.get("url"),
labels=metadata.get("labels"),
type_=metadata.get("type_"),
)
yield issue, score, text
with st.form("my_form"):
st.title("GitHub Issue Search")
query = st.text_input(label="query")
repo_name = st.radio(
options=[
"cpython",
"pyvista",
"plone",
"volto",
"plone.restapi",
"nvda",
"nvdajp",
"cocoa",
],
label="Repo name",
)
query_options = st.radio(
options=[
"query: ",
"query: passage: ",
"Empty",
],
label="Query options",
)
date_min = date(2022, 1, 1)
date_max = date.today()
date_col1, date_col2 = st.columns(2)
start_date = date_col1.date_input(
label="Select a start date",
value=date_min,
format="YYYY-MM-DD",
)
end_date = date_col2.date_input(
label="Select a end date",
value=date_max,
format="YYYY-MM-DD",
)
include_comments = st.checkbox(label="Include Issue comments", value=True)
submit_col1, submit_col2 = st.columns(2)
searched = submit_col1.form_submit_button("Search")
if searched:
st.divider()
st.header("Search Results")
st.divider()
with st.spinner("Searching..."):
results = run_search(
query, repo_name, query_options, start_date, end_date, include_comments
)
for issue, score, text in results:
title = issue.title
url = issue.url
id_ = issue.id
score = round(score, 3)
created_at = datetime.fromtimestamp(issue.created_at)
user = issue.user
labels = issue.labels
is_comment = issue.type_ == "comment"
with st.container():
if not is_comment:
st.subheader(f"#{id_} - {title}")
else:
st.subheader(f"comment with {title}")
st.write(url)
st.write(text)
st.write("score:", score, "Date:", created_at.date(), "User:", user)
st.write(f"{labels=}")
# st.markdown(html, unsafe_allow_html=True)
st.divider()
qa_searched = submit_col2.form_submit_button("QA Search by OpenAI")
if qa_searched:
st.divider()
st.header("QA Search Results by OpenAI GPT-3")
st.divider()
with st.spinner("QA Searching..."):
results = run_qa(
query, repo_name, query_options, start_date, end_date, include_comments
)
answer, html = results
with st.container():
st.write(answer)
st.markdown(html, unsafe_allow_html=True)
st.divider()
|