Spaces:
Sleeping
Sleeping
File size: 8,549 Bytes
c56ab56 240fe8a 70d7754 23687d1 70d7754 2f682e6 70d7754 648f519 1f4ac35 23687d1 b6dd5cc 23687d1 70d7754 1f4ac35 26167f0 1f4ac35 2f682e6 70d7754 1f4ac35 2f682e6 70d7754 d7b3b8a 70d7754 648f519 70d7754 648f519 70d7754 c56ab56 70d7754 c56ab56 70d7754 2f682e6 1f4ac35 2f682e6 1f4ac35 341f67a 1f4ac35 341f67a 1f4ac35 70d7754 d7b3b8a 1f4ac35 d7b3b8a c56ab56 1f4ac35 2f682e6 1f4ac35 d7b3b8a 1f4ac35 d7b3b8a 2f682e6 1f4ac35 d7b3b8a 23687d1 d7b3b8a c56ab56 70d7754 23687d1 b8a64cb 648f519 c56ab56 648f519 23687d1 648f519 23687d1 70d7754 c56ab56 240fe8a b8a64cb 70d7754 1f4ac35 b8a64cb 70d7754 d7b3b8a c56ab56 648f519 c56ab56 70d7754 6fe16b3 70d7754 c56ab56 70d7754 b8a64cb 1f4ac35 26167f0 1f4ac35 240fe8a 1f4ac35 2f682e6 d7b3b8a 1f4ac35 b8a64cb 2f682e6 240fe8a 2f682e6 240fe8a 2f682e6 d7b3b8a 2f682e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from datetime import datetime
from time import time
from typing import Iterable
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, Range
from langchain.chains import RetrievalQA
from openai.error import InvalidRequestError
from langchain.chat_models import ChatOpenAI
from config import DB_CONFIG, INDEX_NAMES
from models import BaseModel
@st.cache_resource
def load_embeddings():
model_name = "intfloat/multilingual-e5-large"
model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
encode_kwargs = {"normalize_embeddings": False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
return embeddings
@st.cache_resource
def llm_model(model="gpt-4o-mini", temperature=0.2):
llm = ChatOpenAI(model=model, temperature=temperature)
return llm
@st.cache_resource
def load_vicuna_model():
if torch.cuda.is_available():
model_name = "lmsys/vicuna-13b-v1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
return tokenizer, model
else:
return None, None
EMBEDDINGS = load_embeddings()
LLM = llm_model()
VICUNA_TOKENIZER, VICUNA_MODEL = load_vicuna_model()
@st.cache_resource
def _get_vicuna_llm(temperature=0.2) -> HuggingFacePipeline | None:
if VICUNA_MODEL is not None:
pipe = pipeline(
"text-generation",
model=VICUNA_MODEL,
tokenizer=VICUNA_TOKENIZER,
max_new_tokens=1024,
temperature=temperature,
)
llm = HuggingFacePipeline(pipeline=pipe)
else:
llm = None
return llm
VICUNA_LLM = _get_vicuna_llm()
def make_index_filter_obj(index_list: list[str]):
should = []
for index in index_list:
should.append(
FieldCondition(
key="metadata.index", match=MatchValue(value=index)
)
)
filter = Filter(should=should)
return filter
def make_filter_obj(options: list[dict[str]]):
# print(options)
must = []
for option in options:
if "value" in option:
must.append(
FieldCondition(
key=option["key"], match=MatchValue(value=option["value"])
)
)
elif "range" in option:
range_ = option["range"]
must.append(
FieldCondition(
key=option["key"],
range=Range(
gt=range_.get("gt"),
gte=range_.get("gte"),
lt=range_.get("lt"),
lte=range_.get("lte"),
),
)
)
filter = Filter(must=must)
return filter
def get_similay(query: str, filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
qdocs = db.similarity_search_with_score(
query,
k=20,
filter=filter,
)
return qdocs
def get_retrieval_qa(filter: Filter, llm):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
retriever = db.as_retriever(
search_kwargs={
"filter": filter,
}
)
result = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
)
return result
def _get_related_url(metadata) -> Iterable[str]:
urls = set()
for m in metadata:
url = m["url"]
if url in urls:
continue
urls.add(url)
ctime = datetime.fromtimestamp(m["ctime"])
# print(m)
yield f'<p>URL: <a href="{url}">{url}</a> (created: {ctime:%Y-%m-%d})</p>'
def _get_query_str_filter(
query: str,
index_list: list[str],
) -> tuple[str, Filter]:
# options = [{"key": "metadata.index", "value": index_list[0]}]
# filter = make_filter_obj(options=options)
filter = make_index_filter_obj(index_list)
return query, filter
def run_qa(
llm,
query: str,
index_list: list[str],
) -> tuple[str, str]:
now = time()
query_str, filter = _get_query_str_filter(query, index_list)
qa = get_retrieval_qa(filter, llm)
try:
result = qa(query_str)
except InvalidRequestError as e:
return "ๅ็ญใ่ฆใคใใใพใใใงใใใๅฅใช่ณชๅใใใฆใฟใฆใใ ใใ", str(e)
else:
metadata = [s.metadata for s in result["source_documents"]]
sec_html = f"<p>ๅฎ่กๆ้: {(time() - now):.2f}็ง</p>"
html = "<div>" + sec_html + "\n".join(_get_related_url(metadata)) + "</div>"
return result["result"], html
def run_search(
query: str,
index_list: list[str],
) -> Iterable[tuple[BaseModel, float, str]]:
query_str, filter = _get_query_str_filter(query, index_list)
qdocs = get_similay(query_str, filter)
for qdoc, score in qdocs:
text = qdoc.page_content
metadata = qdoc.metadata
# print(metadata)
data = BaseModel(
index=metadata.get("index"),
id=metadata.get("id"),
title=metadata.get("title"),
ctime=metadata.get("ctime"),
user=metadata.get("user"),
url=metadata.get("url"),
type=metadata.get("type"),
)
yield data, score, text
with st.form("my_form"):
st.title("Document Search")
query = st.text_area(label="query")
index_list = st.multiselect(
label="index",
options=INDEX_NAMES,
default=INDEX_NAMES,
placeholder="Select index",
)
submit_col1, submit_col2 = st.columns(2)
searched = submit_col2.form_submit_button("Search")
if not index_list:
st.error("Please select at least one index.")
if searched and index_list:
st.divider()
st.header("Search Results")
st.divider()
with st.spinner("Searching..."):
results = run_search(query, index_list)
for doc, score, text in results:
title = doc.title
url = doc.url
id_ = doc.id
score = round(score, 3)
ctime = datetime.fromtimestamp(doc.ctime)
user = doc.user
with st.container():
st.subheader(title)
st.write(url)
st.write(text)
st.write("score:", score, "Date:", ctime.date(), "User:", user)
st.divider()
qa_searched = submit_col1.form_submit_button("Q&A by OpenAI")
if qa_searched and index_list:
st.divider()
st.header("Answer by OpenAI GPT-4o mini")
st.divider()
with st.spinner("Thinking..."):
results = run_qa(
LLM,
query,
index_list,
)
answer, html = results
with st.container():
st.write(answer)
st.markdown(html, unsafe_allow_html=True)
st.divider()
if torch.cuda.is_available() and index_list:
qa_searched_vicuna = submit_col1.form_submit_button("Answer by Vicuna")
if qa_searched_vicuna:
st.divider()
st.header("Answer by Vicuna-13b-v1.5")
st.divider()
with st.spinner("Thinking..."):
results = run_qa(
VICUNA_LLM,
query,
index_list,
)
answer, html = results
with st.container():
st.write(answer)
st.markdown(html, unsafe_allow_html=True)
st.divider()
|