Spaces:
Sleeping
Sleeping
Commit
·
240fe8a
1
Parent(s):
e04649d
Update streamlit UI
Browse files
README.md
CHANGED
@@ -12,6 +12,13 @@ license: mit
|
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# import GitHub issues
|
16 |
|
17 |
## export from github
|
|
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
|
15 |
+
# Required Environment variables
|
16 |
+
|
17 |
+
- `INDEX_KEYS`: comma separated index names
|
18 |
+
- `QDRANT_URL`: Qdrant API endpoint
|
19 |
+
- `QDRANT_API_KEY`: Qdrant API Key
|
20 |
+
- `OPENAI_API_KEY`: OpenAI API Key
|
21 |
+
|
22 |
# import GitHub issues
|
23 |
|
24 |
## export from github
|
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
from time import time
|
2 |
from datetime import datetime
|
|
|
3 |
from typing import Iterable
|
4 |
|
5 |
import streamlit as st
|
@@ -14,7 +14,7 @@ from langchain.chains import RetrievalQA
|
|
14 |
from openai.error import InvalidRequestError
|
15 |
from langchain.chat_models import ChatOpenAI
|
16 |
|
17 |
-
from config import DB_CONFIG
|
18 |
from models import BaseModel
|
19 |
|
20 |
|
@@ -202,8 +202,8 @@ def run_search(
|
|
202 |
|
203 |
with st.form("my_form"):
|
204 |
st.title("Document Search")
|
205 |
-
query = st.
|
206 |
-
index = st.
|
207 |
|
208 |
submit_col1, submit_col2 = st.columns(2)
|
209 |
searched = submit_col1.form_submit_button("Search")
|
@@ -226,12 +226,12 @@ with st.form("my_form"):
|
|
226 |
st.write(text)
|
227 |
st.write("score:", score, "Date:", ctime.date(), "User:", user)
|
228 |
st.divider()
|
229 |
-
qa_searched = submit_col2.form_submit_button("
|
230 |
if qa_searched:
|
231 |
st.divider()
|
232 |
-
st.header("
|
233 |
st.divider()
|
234 |
-
with st.spinner("
|
235 |
results = run_qa(
|
236 |
LLM,
|
237 |
query,
|
@@ -243,12 +243,12 @@ with st.form("my_form"):
|
|
243 |
st.markdown(html, unsafe_allow_html=True)
|
244 |
st.divider()
|
245 |
if torch.cuda.is_available():
|
246 |
-
qa_searched_vicuna = submit_col2.form_submit_button("
|
247 |
if qa_searched_vicuna:
|
248 |
st.divider()
|
249 |
-
st.header("
|
250 |
st.divider()
|
251 |
-
with st.spinner("
|
252 |
results = run_qa(
|
253 |
VICUNA_LLM,
|
254 |
query,
|
|
|
|
|
1 |
from datetime import datetime
|
2 |
+
from time import time
|
3 |
from typing import Iterable
|
4 |
|
5 |
import streamlit as st
|
|
|
14 |
from openai.error import InvalidRequestError
|
15 |
from langchain.chat_models import ChatOpenAI
|
16 |
|
17 |
+
from config import DB_CONFIG, INDEX_KEYS
|
18 |
from models import BaseModel
|
19 |
|
20 |
|
|
|
202 |
|
203 |
with st.form("my_form"):
|
204 |
st.title("Document Search")
|
205 |
+
query = st.text_area(label="query")
|
206 |
+
index = st.selectbox(label="index", options=INDEX_KEYS)
|
207 |
|
208 |
submit_col1, submit_col2 = st.columns(2)
|
209 |
searched = submit_col1.form_submit_button("Search")
|
|
|
226 |
st.write(text)
|
227 |
st.write("score:", score, "Date:", ctime.date(), "User:", user)
|
228 |
st.divider()
|
229 |
+
qa_searched = submit_col2.form_submit_button("Q&A by OpenAI")
|
230 |
if qa_searched:
|
231 |
st.divider()
|
232 |
+
st.header("Answer by OpenAI GPT-3")
|
233 |
st.divider()
|
234 |
+
with st.spinner("Thinking..."):
|
235 |
results = run_qa(
|
236 |
LLM,
|
237 |
query,
|
|
|
243 |
st.markdown(html, unsafe_allow_html=True)
|
244 |
st.divider()
|
245 |
if torch.cuda.is_available():
|
246 |
+
qa_searched_vicuna = submit_col2.form_submit_button("Answer by Vicuna")
|
247 |
if qa_searched_vicuna:
|
248 |
st.divider()
|
249 |
+
st.header("Answer by Vicuna-13b-v1.5")
|
250 |
st.divider()
|
251 |
+
with st.spinner("Thinking..."):
|
252 |
results = run_qa(
|
253 |
VICUNA_LLM,
|
254 |
query,
|
config.py
CHANGED
@@ -18,4 +18,18 @@ def get_local_db_congin():
|
|
18 |
return url, None, collection_name
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
DB_CONFIG = get_db_config() if SAAS else get_local_db_congin()
|
|
|
|
18 |
return url, None, collection_name
|
19 |
|
20 |
|
21 |
+
def get_index_keys():
|
22 |
+
keys = [
|
23 |
+
k for k in [
|
24 |
+
k.strip().lower()
|
25 |
+
for k in os.environ["INDEX_KEYS"].split(",")
|
26 |
+
]
|
27 |
+
if k
|
28 |
+
]
|
29 |
+
if not keys:
|
30 |
+
keys = ["INDEX_KEYS is empty"]
|
31 |
+
return keys
|
32 |
+
|
33 |
+
|
34 |
DB_CONFIG = get_db_config() if SAAS else get_local_db_congin()
|
35 |
+
INDEX_KEYS = get_index_keys()
|