Spaces:
Running
on
L4
Running
on
L4
# coding=utf-8 | |
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for OpenAI GPT.""" | |
from __future__ import (absolute_import, division, print_function, | |
unicode_literals) | |
import logging | |
import os | |
import json | |
import six | |
import copy | |
from io import open | |
from .file_utils import cached_path | |
logger = logging.getLogger(__name__) | |
SPECIAL_TOKENS_MAP_FILE = 'special_tokens_map.json' | |
ADDED_TOKENS_FILE = 'added_tokens.json' | |
TOKENIZER_CONFIG_FILE = 'tokenizer_config.json' | |
class PreTrainedTokenizer(object): | |
""" Base class for all tokenizers. | |
Handle all the shared methods for tokenization and special tokens as well as methods dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary. | |
This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...). | |
Class attributes (overridden by derived classes): | |
- ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string). | |
- ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file. | |
- ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size. | |
- ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the ``from_pretrained()`` method. | |
Parameters: | |
- ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token`` and ``self.bos_token_id`` | |
- ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token`` and ``self.eos_token_id`` | |
- ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token`` and ``self.unk_token_id`` | |
- ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token`` and ``self.sep_token_id`` | |
- ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token`` and ``self.pad_token_id`` | |
- ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token`` and ``self.cls_token_id`` | |
- ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id`` | |
- ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids`` | |
""" | |
vocab_files_names = {} | |
pretrained_vocab_files_map = {} | |
pretrained_init_configuration = {} | |
max_model_input_sizes = {} | |
SPECIAL_TOKENS_ATTRIBUTES = ["bos_token", "eos_token", "unk_token", "sep_token", | |
"pad_token", "cls_token", "mask_token", | |
"additional_special_tokens"] | |
def bos_token(self): | |
""" Beginning of sentence token (string). Log an error if used while not having been set. """ | |
if self._bos_token is None: | |
logger.error("Using bos_token, but it is not set yet.") | |
return self._bos_token | |
def eos_token(self): | |
""" End of sentence token (string). Log an error if used while not having been set. """ | |
if self._eos_token is None: | |
logger.error("Using eos_token, but it is not set yet.") | |
return self._eos_token | |
def unk_token(self): | |
""" Unknown token (string). Log an error if used while not having been set. """ | |
if self._unk_token is None: | |
logger.error("Using unk_token, but it is not set yet.") | |
return self._unk_token | |
def sep_token(self): | |
""" Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """ | |
if self._sep_token is None: | |
logger.error("Using sep_token, but it is not set yet.") | |
return self._sep_token | |
def pad_token(self): | |
""" Padding token (string). Log an error if used while not having been set. """ | |
if self._pad_token is None: | |
logger.error("Using pad_token, but it is not set yet.") | |
return self._pad_token | |
def cls_token(self): | |
""" Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ | |
if self._cls_token is None: | |
logger.error("Using cls_token, but it is not set yet.") | |
return self._cls_token | |
def mask_token(self): | |
""" Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ | |
if self._mask_token is None: | |
logger.error("Using mask_token, but it is not set yet.") | |
return self._mask_token | |
def additional_special_tokens(self): | |
""" All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """ | |
if self._additional_special_tokens is None: | |
logger.error("Using additional_special_tokens, but it is not set yet.") | |
return self._additional_special_tokens | |
def bos_token(self, value): | |
self._bos_token = value | |
def eos_token(self, value): | |
self._eos_token = value | |
def unk_token(self, value): | |
self._unk_token = value | |
def sep_token(self, value): | |
self._sep_token = value | |
def pad_token(self, value): | |
self._pad_token = value | |
def cls_token(self, value): | |
self._cls_token = value | |
def mask_token(self, value): | |
self._mask_token = value | |
def additional_special_tokens(self, value): | |
self._additional_special_tokens = value | |
def bos_token_id(self): | |
""" Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.bos_token) | |
def eos_token_id(self): | |
""" Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.eos_token) | |
def unk_token_id(self): | |
""" Id of the unknown token in the vocabulary. Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.unk_token) | |
def sep_token_id(self): | |
""" Id of the separation token in the vocabulary. E.g. separate context and query in an input sequence. Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.sep_token) | |
def pad_token_id(self): | |
""" Id of the padding token in the vocabulary. Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.pad_token) | |
def cls_token_id(self): | |
""" Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.cls_token) | |
def mask_token_id(self): | |
""" Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.mask_token) | |
def additional_special_tokens_ids(self): | |
""" Ids of all the additional special tokens in the vocabulary (list of integers). Log an error if used while not having been set. """ | |
return self.convert_tokens_to_ids(self.additional_special_tokens) | |
def __init__(self, max_len=None, **kwargs): | |
self._bos_token = None | |
self._eos_token = None | |
self._unk_token = None | |
self._sep_token = None | |
self._pad_token = None | |
self._cls_token = None | |
self._mask_token = None | |
self._additional_special_tokens = [] | |
self.max_len = max_len if max_len is not None else int(1e12) | |
# Added tokens | |
self.added_tokens_encoder = {} | |
self.added_tokens_decoder = {} | |
# inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``) | |
self.init_inputs = () | |
self.init_kwargs = {} | |
for key, value in kwargs.items(): | |
if key in self.SPECIAL_TOKENS_ATTRIBUTES: | |
if key == 'additional_special_tokens': | |
assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value) | |
else: | |
assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode)) | |
setattr(self, key, value) | |
def from_pretrained(cls, *inputs, **kwargs): | |
r""" | |
Instantiate a :class:`~pytorch_transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer. | |
Args: | |
pretrained_model_name_or_path: either: | |
- a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``. | |
- (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the vocabulary files and override the cached versions if they exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method. | |
kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details. | |
Examples:: | |
# We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer | |
# Download vocabulary from S3 and cache. | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
# If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`) | |
tokenizer = BertTokenizer.from_pretrained('./test/saved_model/') | |
# If the tokenizer uses a single vocabulary file, you can point directly to this file | |
tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt') | |
# You can link tokens to special vocabulary when instantiating | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>') | |
# You should be sure '<unk>' is in the vocabulary when doing that. | |
# Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead) | |
assert tokenizer.unk_token == '<unk>' | |
""" | |
return cls._from_pretrained(*inputs, **kwargs) | |
def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs): | |
cache_dir = kwargs.pop('cache_dir', None) | |
force_download = kwargs.pop('force_download', False) | |
proxies = kwargs.pop('proxies', None) | |
s3_models = list(cls.max_model_input_sizes.keys()) | |
vocab_files = {} | |
init_configuration = {} | |
if pretrained_model_name_or_path in s3_models: | |
# Get the vocabulary from AWS S3 bucket | |
for file_id, map_list in cls.pretrained_vocab_files_map.items(): | |
vocab_files[file_id] = map_list[pretrained_model_name_or_path] | |
if cls.pretrained_init_configuration and pretrained_model_name_or_path in cls.pretrained_init_configuration: | |
init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path] | |
else: | |
# Get the vocabulary from local files | |
logger.info( | |
"Model name '{}' not found in model shortcut name list ({}). " | |
"Assuming '{}' is a path or url to a directory containing tokenizer files.".format( | |
pretrained_model_name_or_path, ', '.join(s3_models), | |
pretrained_model_name_or_path)) | |
# Look for the tokenizer main vocabulary files | |
for file_id, file_name in cls.vocab_files_names.items(): | |
if os.path.isdir(pretrained_model_name_or_path): | |
# If a directory is provided we look for the standard filenames | |
full_file_name = os.path.join(pretrained_model_name_or_path, file_name) | |
else: | |
# If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file) | |
full_file_name = pretrained_model_name_or_path | |
if not os.path.exists(full_file_name): | |
logger.info("Didn't find file {}. We won't load it.".format(full_file_name)) | |
full_file_name = None | |
vocab_files[file_id] = full_file_name | |
# Look for the additional tokens files | |
additional_files_names = {'added_tokens_file': ADDED_TOKENS_FILE, | |
'special_tokens_map_file': SPECIAL_TOKENS_MAP_FILE, | |
'tokenizer_config_file': TOKENIZER_CONFIG_FILE, | |
} | |
# If a path to a file was provided, get the parent directory | |
saved_directory = pretrained_model_name_or_path | |
if os.path.exists(saved_directory) and not os.path.isdir(saved_directory): | |
saved_directory = os.path.dirname(saved_directory) | |
for file_id, file_name in additional_files_names.items(): | |
full_file_name = os.path.join(saved_directory, file_name) | |
if not os.path.exists(full_file_name): | |
logger.info("Didn't find file {}. We won't load it.".format(full_file_name)) | |
full_file_name = None | |
vocab_files[file_id] = full_file_name | |
if all(full_file_name is None for full_file_name in vocab_files.values()): | |
logger.error( | |
"Model name '{}' was not found in model name list ({}). " | |
"We assumed '{}' was a path or url but couldn't find tokenizer files" | |
"at this path or url.".format( | |
pretrained_model_name_or_path, ', '.join(s3_models), | |
pretrained_model_name_or_path, )) | |
return None | |
# Get files from url, cache, or disk depending on the case | |
try: | |
resolved_vocab_files = {} | |
for file_id, file_path in vocab_files.items(): | |
if file_path is None: | |
resolved_vocab_files[file_id] = None | |
else: | |
resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies) | |
except EnvironmentError as e: | |
if pretrained_model_name_or_path in s3_models: | |
logger.error("Couldn't reach server to download vocabulary.") | |
else: | |
logger.error( | |
"Model name '{}' was not found in model name list ({}). " | |
"We assumed '{}' was a path or url but couldn't find files {} " | |
"at this path or url.".format( | |
pretrained_model_name_or_path, ', '.join(s3_models), | |
pretrained_model_name_or_path, str(vocab_files.keys()))) | |
raise e | |
for file_id, file_path in vocab_files.items(): | |
if file_path == resolved_vocab_files[file_id]: | |
logger.info("loading file {}".format(file_path)) | |
else: | |
logger.info("loading file {} from cache at {}".format( | |
file_path, resolved_vocab_files[file_id])) | |
# Prepare tokenizer initialization kwargs | |
# Did we saved some inputs and kwargs to reload ? | |
tokenizer_config_file = resolved_vocab_files.pop('tokenizer_config_file', None) | |
if tokenizer_config_file is not None: | |
init_kwargs = json.load(open(tokenizer_config_file, encoding="utf-8")) | |
saved_init_inputs = init_kwargs.pop('init_inputs', ()) | |
if not init_inputs: | |
init_inputs = saved_init_inputs | |
else: | |
init_kwargs = init_configuration | |
# Update with newly provided kwargs | |
init_kwargs.update(kwargs) | |
# Set max length if needed | |
if pretrained_model_name_or_path in cls.max_model_input_sizes: | |
# if we're using a pretrained model, ensure the tokenizer | |
# wont index sequences longer than the number of positional embeddings | |
max_len = cls.max_model_input_sizes[pretrained_model_name_or_path] | |
if max_len is not None and isinstance(max_len, (int, float)): | |
init_kwargs['max_len'] = min(init_kwargs.get('max_len', int(1e12)), max_len) | |
# Merge resolved_vocab_files arguments in init_kwargs. | |
added_tokens_file = resolved_vocab_files.pop('added_tokens_file', None) | |
special_tokens_map_file = resolved_vocab_files.pop('special_tokens_map_file', None) | |
for args_name, file_path in resolved_vocab_files.items(): | |
if args_name not in init_kwargs: | |
init_kwargs[args_name] = file_path | |
if special_tokens_map_file is not None: | |
special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8")) | |
for key, value in special_tokens_map.items(): | |
if key not in init_kwargs: | |
init_kwargs[key] = value | |
# Instantiate tokenizer. | |
tokenizer = cls(*init_inputs, **init_kwargs) | |
# Save inputs and kwargs for saving and re-loading with ``save_pretrained`` | |
tokenizer.init_inputs = init_inputs | |
tokenizer.init_kwargs = init_kwargs | |
# Add supplementary tokens. | |
if added_tokens_file is not None: | |
added_tok_encoder = json.load(open(added_tokens_file, encoding="utf-8")) | |
added_tok_decoder = {v:k for k, v in added_tok_encoder.items()} | |
tokenizer.added_tokens_encoder.update(added_tok_encoder) | |
tokenizer.added_tokens_decoder.update(added_tok_decoder) | |
return tokenizer | |
def save_pretrained(self, save_directory): | |
""" Save the tokenizer vocabulary files together with: | |
- added tokens, | |
- special-tokens-to-class-attributes-mapping, | |
- tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert). | |
This won't save modifications other than (added tokens and special token mapping) you may have | |
applied to the tokenizer after the instantion (e.g. modifying tokenizer.do_lower_case after creation). | |
This method make sure the full tokenizer can then be re-loaded using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method. | |
""" | |
if not os.path.isdir(save_directory): | |
logger.error("Saving directory ({}) should be a directory".format(save_directory)) | |
return | |
special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE) | |
added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE) | |
tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE) | |
tokenizer_config = copy.deepcopy(self.init_kwargs) | |
tokenizer_config['init_inputs'] = copy.deepcopy(self.init_inputs) | |
for file_id in self.vocab_files_names.keys(): | |
tokenizer_config.pop(file_id, None) | |
with open(tokenizer_config_file, 'w', encoding='utf-8') as f: | |
f.write(json.dumps(tokenizer_config, ensure_ascii=False)) | |
with open(special_tokens_map_file, 'w', encoding='utf-8') as f: | |
f.write(json.dumps(self.special_tokens_map, ensure_ascii=False)) | |
with open(added_tokens_file, 'w', encoding='utf-8') as f: | |
if self.added_tokens_encoder: | |
out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False) | |
else: | |
out_str = u"{}" | |
f.write(out_str) | |
vocab_files = self.save_vocabulary(save_directory) | |
return vocab_files + (special_tokens_map_file, added_tokens_file) | |
def save_vocabulary(self, save_directory): | |
""" Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens | |
and special token mappings. | |
Please use :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method. | |
""" | |
raise NotImplementedError | |
def vocab_size(self): | |
""" Size of the base vocabulary (without the added tokens) """ | |
raise NotImplementedError | |
def __len__(self): | |
""" Size of the full vocabulary with the added tokens """ | |
return self.vocab_size + len(self.added_tokens_encoder) | |
def add_tokens(self, new_tokens): | |
""" | |
Add a list of new tokens to the tokenizer class. If the new tokens are not in the | |
vocabulary, they are added to it with indices starting from length of the current vocabulary. | |
Args: | |
new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them). | |
Returns: | |
Number of tokens added to the vocabulary. | |
Examples:: | |
# Let's see how to increase the vocabulary of Bert model and tokenizer | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertModel.from_pretrained('bert-base-uncased') | |
num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2']) | |
print('We have added', num_added_toks, 'tokens') | |
model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. | |
""" | |
if not new_tokens: | |
return 0 | |
to_add_tokens = [] | |
for token in new_tokens: | |
assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode)) | |
if token != self.unk_token and \ | |
self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token): | |
to_add_tokens.append(token) | |
logger.info("Adding %s to the vocabulary", token) | |
added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens)) | |
added_tok_decoder = {v:k for k, v in added_tok_encoder.items()} | |
self.added_tokens_encoder.update(added_tok_encoder) | |
self.added_tokens_decoder.update(added_tok_decoder) | |
return len(to_add_tokens) | |
def add_special_tokens(self, special_tokens_dict): | |
""" | |
Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them | |
to class attributes. If special tokens are NOT in the vocabulary, they are added | |
to it (indexed starting from the last index of the current vocabulary). | |
Using `add_special_tokens` will ensure your special tokens can be used in several ways: | |
- special tokens are carefully handled by the tokenizer (they are never split) | |
- you can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts. | |
When possible, special tokens are already registered for provided pretrained models (ex: BertTokenizer cls_token is already registered to be '[CLS]' and XLM's one is also registered to be '</s>') | |
Args: | |
special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes: | |
[``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, | |
``additional_special_tokens``]. | |
Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them). | |
Returns: | |
Number of tokens added to the vocabulary. | |
Examples:: | |
# Let's see how to add a new classification token to GPT-2 | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2Model.from_pretrained('gpt2') | |
special_tokens_dict = {'cls_token': '<CLS>'} | |
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) | |
print('We have added', num_added_toks, 'tokens') | |
model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. | |
assert tokenizer.cls_token == '<CLS>' | |
""" | |
if not special_tokens_dict: | |
return 0 | |
added_tokens = 0 | |
for key, value in special_tokens_dict.items(): | |
assert key in self.SPECIAL_TOKENS_ATTRIBUTES | |
if key == 'additional_special_tokens': | |
assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value) | |
added_tokens += self.add_tokens(value) | |
else: | |
assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode)) | |
added_tokens += self.add_tokens([value]) | |
logger.info("Assigning %s to the %s key of the tokenizer", value, key) | |
setattr(self, key, value) | |
return added_tokens | |
def tokenize(self, text, **kwargs): | |
""" Converts a string in a sequence of tokens (string), using the tokenizer. | |
Split in words for word-based vocabulary or sub-words for sub-word-based | |
vocabularies (BPE/SentencePieces/WordPieces). | |
Take care of added tokens. | |
""" | |
def split_on_token(tok, text): | |
result = [] | |
split_text = text.split(tok) | |
for i, sub_text in enumerate(split_text): | |
sub_text = sub_text.strip() | |
if i == 0 and not sub_text: | |
result += [tok] | |
elif i == len(split_text) - 1: | |
if sub_text: | |
result += [sub_text] | |
else: | |
pass | |
else: | |
if sub_text: | |
result += [sub_text] | |
result += [tok] | |
return result | |
def split_on_tokens(tok_list, text): | |
if not text: | |
return [] | |
if not tok_list: | |
return self._tokenize(text, **kwargs) | |
tokenized_text = [] | |
text_list = [text] | |
for tok in tok_list: | |
tokenized_text = [] | |
for sub_text in text_list: | |
if sub_text not in self.added_tokens_encoder \ | |
and sub_text not in self.all_special_tokens: | |
tokenized_text += split_on_token(tok, sub_text) | |
else: | |
tokenized_text += [sub_text] | |
text_list = tokenized_text | |
return sum((self._tokenize(token, **kwargs) if token not \ | |
in self.added_tokens_encoder and token not in self.all_special_tokens \ | |
else [token] for token in tokenized_text), []) | |
added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens | |
tokenized_text = split_on_tokens(added_tokens, text) | |
return tokenized_text | |
def _tokenize(self, text, **kwargs): | |
""" Converts a string in a sequence of tokens (string), using the tokenizer. | |
Split in words for word-based vocabulary or sub-words for sub-word-based | |
vocabularies (BPE/SentencePieces/WordPieces). | |
Do NOT take care of added tokens. | |
""" | |
raise NotImplementedError | |
def convert_tokens_to_ids(self, tokens): | |
""" Converts a single token, or a sequence of tokens, (str/unicode) in a single integer id | |
(resp. a sequence of ids), using the vocabulary. | |
""" | |
if tokens is None: | |
return None | |
if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)): | |
return self._convert_token_to_id_with_added_voc(tokens) | |
ids = [] | |
for token in tokens: | |
ids.append(self._convert_token_to_id_with_added_voc(token)) | |
if len(ids) > self.max_len: | |
logger.warning("Token indices sequence length is longer than the specified maximum sequence length " | |
"for this model ({} > {}). Running this sequence through the model will result in " | |
"indexing errors".format(len(ids), self.max_len)) | |
return ids | |
def _convert_token_to_id_with_added_voc(self, token): | |
if token is None: | |
return None | |
if token in self.added_tokens_encoder: | |
return self.added_tokens_encoder[token] | |
return self._convert_token_to_id(token) | |
def _convert_token_to_id(self, token): | |
raise NotImplementedError | |
def encode(self, text, text_pair=None, add_special_tokens=False, **kwargs): | |
""" | |
Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary. | |
Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``. | |
Args: | |
text: The first sequence to be encoded. | |
text_pair: Optional second sequence to be encoded. | |
add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative | |
to their model. | |
**kwargs: passed to the `self.tokenize()` method | |
""" | |
if text_pair is None: | |
if add_special_tokens: | |
return self.add_special_tokens_single_sentence(self.convert_tokens_to_ids(self.tokenize(text, **kwargs))) | |
else: | |
return self.convert_tokens_to_ids(self.tokenize(text, **kwargs)) | |
first_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text, **kwargs)] | |
second_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text_pair, **kwargs)] | |
if add_special_tokens: | |
return self.add_special_tokens_sentences_pair(first_sentence_tokens, second_sentence_tokens) | |
else: | |
return first_sentence_tokens, second_sentence_tokens | |
def add_special_tokens_single_sentence(self, token_ids): | |
logger.warning("This tokenizer does not make use of special tokens. The sequence has been returned with no modification.") | |
return token_ids | |
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1): | |
logger.warning("This tokenizer does not make use of special tokens. The two sequences have been concatenated.") | |
return token_ids_0 + token_ids_1 | |
def convert_ids_to_tokens(self, ids, skip_special_tokens=False): | |
""" Converts a single index or a sequence of indices (integers) in a token " | |
(resp.) a sequence of tokens (str/unicode), using the vocabulary and added tokens. | |
Args: | |
skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False | |
""" | |
if isinstance(ids, int): | |
if ids in self.added_tokens_decoder: | |
return self.added_tokens_decoder[ids] | |
else: | |
return self._convert_id_to_token(ids) | |
tokens = [] | |
for index in ids: | |
if skip_special_tokens and index in self.all_special_ids: | |
continue | |
if index in self.added_tokens_decoder: | |
tokens.append(self.added_tokens_decoder[index]) | |
else: | |
tokens.append(self._convert_id_to_token(index)) | |
return tokens | |
def _convert_id_to_token(self, index): | |
raise NotImplementedError | |
def convert_tokens_to_string(self, tokens): | |
""" Converts a sequence of tokens (string) in a single string. | |
The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids)) | |
but we often want to remove sub-word tokenization artifacts at the same time. | |
""" | |
return ' '.join(self.convert_ids_to_tokens(tokens)) | |
def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): | |
""" | |
Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary | |
with options to remove special tokens and clean up tokenization spaces. | |
Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``. | |
""" | |
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) | |
# To avoid mixing byte-level and unicode for byte-level BPT | |
# we need to build string separatly for added tokens and byte-level tokens | |
# cf. https://github.com/huggingface/pytorch-transformers/issues/1133 | |
sub_texts = [] | |
current_sub_text = [] | |
for token in filtered_tokens: | |
if skip_special_tokens and token in self.all_special_ids: | |
continue | |
if token in self.added_tokens_encoder: | |
if current_sub_text: | |
sub_texts.append(self.convert_tokens_to_string(current_sub_text)) | |
current_sub_text = [] | |
sub_texts.append(" " + token) | |
else: | |
current_sub_text.append(token) | |
if current_sub_text: | |
sub_texts.append(self.convert_tokens_to_string(current_sub_text)) | |
text = ''.join(sub_texts) | |
if self._sep_token is not None and self._sep_token in text: | |
text = text.replace(self._cls_token, self._sep_token) | |
split_text = list(filter(lambda sentence: len(sentence) > 0, text.split(self._sep_token))) | |
if clean_up_tokenization_spaces: | |
clean_text = [self.clean_up_tokenization(text) for text in split_text] | |
return clean_text | |
else: | |
return split_text | |
else: | |
if clean_up_tokenization_spaces: | |
clean_text = self.clean_up_tokenization(text) | |
return clean_text | |
else: | |
return text | |
def special_tokens_map(self): | |
""" A dictionary mapping special token class attribute (cls_token, unk_token...) to their | |
values ('<unk>', '<cls>'...) | |
""" | |
set_attr = {} | |
for attr in self.SPECIAL_TOKENS_ATTRIBUTES: | |
attr_value = getattr(self, "_" + attr) | |
if attr_value: | |
set_attr[attr] = attr_value | |
return set_attr | |
def all_special_tokens(self): | |
""" List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes | |
(cls_token, unk_token...). | |
""" | |
all_toks = [] | |
set_attr = self.special_tokens_map | |
for attr_value in set_attr.values(): | |
all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value]) | |
all_toks = list(set(all_toks)) | |
return all_toks | |
def all_special_ids(self): | |
""" List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to | |
class attributes (cls_token, unk_token...). | |
""" | |
all_toks = self.all_special_tokens | |
all_ids = list(self._convert_token_to_id(t) for t in all_toks) | |
return all_ids | |
def clean_up_tokenization(out_string): | |
""" Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms. | |
""" | |
out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ',' | |
).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't" | |
).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re") | |
return out_string | |