Spaces:
Runtime error
Runtime error
File size: 19,934 Bytes
515f781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
from .seecoder_utils import with_pos_embed
from lib.model_zoo.common.get_model import get_model, register
symbol = 'seecoder'
###########
# helpers #
###########
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
def c2_xavier_fill(module):
# Caffe2 implementation of XavierFill in fact
nn.init.kaiming_uniform_(module.weight, a=1)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
def with_pos_embed(x, pos):
return x if pos is None else x + pos
###########
# Modules #
###########
class Conv2d_Convenience(nn.Conv2d):
def __init__(self, *args, **kwargs):
norm = kwargs.pop("norm", None)
activation = kwargs.pop("activation", None)
super().__init__(*args, **kwargs)
self.norm = norm
self.activation = activation
def forward(self, x):
x = F.conv2d(
x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
if self.norm is not None:
x = self.norm(x)
if self.activation is not None:
x = self.activation(x)
return x
class DecoderLayer(nn.Module):
def __init__(self,
dim=256,
feedforward_dim=1024,
dropout=0.1,
activation="relu",
n_heads=8,):
super().__init__()
self.self_attn = nn.MultiheadAttention(dim, n_heads, dropout=dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(dim)
self.linear1 = nn.Linear(dim, feedforward_dim)
self.activation = _get_activation_fn(activation)
self.dropout2 = nn.Dropout(dropout)
self.linear2 = nn.Linear(feedforward_dim, dim)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(dim)
def forward(self, x):
h = x
h1 = self.self_attn(x, x, x, attn_mask=None)[0]
h = h + self.dropout1(h1)
h = self.norm1(h)
h2 = self.linear2(self.dropout2(self.activation(self.linear1(h))))
h = h + self.dropout3(h2)
h = self.norm2(h)
return h
class DecoderLayerStacked(nn.Module):
def __init__(self, layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, x):
h = x
for _, layer in enumerate(self.layers):
h = layer(h)
if self.norm is not None:
h = self.norm(h)
return h
class SelfAttentionLayer(nn.Module):
def __init__(self, channels, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(channels, nhead, dropout=dropout)
self.norm = nn.LayerNorm(channels)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward_post(self,
qkv,
qk_pos = None,
mask = None,):
h = qkv
qk = with_pos_embed(qkv, qk_pos).transpose(0, 1)
v = qkv.transpose(0, 1)
h1 = self.self_attn(qk, qk, v, attn_mask=mask)[0]
h1 = h1.transpose(0, 1)
h = h + self.dropout(h1)
h = self.norm(h)
return h
def forward_pre(self, tgt,
tgt_mask = None,
tgt_key_padding_mask = None,
query_pos = None):
# deprecated
assert False
tgt2 = self.norm(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, *args, **kwargs):
if self.normalize_before:
return self.forward_pre(*args, **kwargs)
return self.forward_post(*args, **kwargs)
class CrossAttentionLayer(nn.Module):
def __init__(self, channels, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.multihead_attn = nn.MultiheadAttention(channels, nhead, dropout=dropout)
self.norm = nn.LayerNorm(channels)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward_post(self,
q,
kv,
q_pos = None,
k_pos = None,
mask = None,):
h = q
q = with_pos_embed(q, q_pos).transpose(0, 1)
k = with_pos_embed(kv, k_pos).transpose(0, 1)
v = kv.transpose(0, 1)
h1 = self.multihead_attn(q, k, v, attn_mask=mask)[0]
h1 = h1.transpose(0, 1)
h = h + self.dropout(h1)
h = self.norm(h)
return h
def forward_pre(self, tgt, memory,
memory_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None):
# Deprecated
assert False
tgt2 = self.norm(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, *args, **kwargs):
if self.normalize_before:
return self.forward_pre(*args, **kwargs)
return self.forward_post(*args, **kwargs)
class FeedForwardLayer(nn.Module):
def __init__(self, channels, hidden_channels=2048, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.linear1 = nn.Linear(channels, hidden_channels)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(hidden_channels, channels)
self.norm = nn.LayerNorm(channels)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward_post(self, x):
h = x
h1 = self.linear2(self.dropout(self.activation(self.linear1(h))))
h = h + self.dropout(h1)
h = self.norm(h)
return h
def forward_pre(self, x):
xn = self.norm(x)
h = x
h1 = self.linear2(self.dropout(self.activation(self.linear1(xn))))
h = h + self.dropout(h1)
return h
def forward(self, *args, **kwargs):
if self.normalize_before:
return self.forward_pre(*args, **kwargs)
return self.forward_post(*args, **kwargs)
class MLP(nn.Module):
def __init__(self, in_channels, channels, out_channels, num_layers):
super().__init__()
self.num_layers = num_layers
h = [channels] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k)
for n, k in zip([in_channels]+h, h+[out_channels]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class PPE_MLP(nn.Module):
def __init__(self, freq_num=20, freq_max=None, out_channel=768, mlp_layer=3):
import math
super().__init__()
self.freq_num = freq_num
self.freq_max = freq_max
self.out_channel = out_channel
self.mlp_layer = mlp_layer
self.twopi = 2 * math.pi
mlp = []
in_channel = freq_num*4
for idx in range(mlp_layer):
linear = nn.Linear(in_channel, out_channel, bias=True)
nn.init.xavier_normal_(linear.weight)
nn.init.constant_(linear.bias, 0)
mlp.append(linear)
if idx != mlp_layer-1:
mlp.append(nn.SiLU())
in_channel = out_channel
self.mlp = nn.Sequential(*mlp)
nn.init.constant_(self.mlp[-1].weight, 0)
def forward(self, x, mask=None):
assert mask is None, "Mask not implemented"
h, w = x.shape[-2:]
minlen = min(h, w)
h_embed, w_embed = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij')
if self.training:
import numpy.random as npr
pertube_h, pertube_w = npr.uniform(-0.5, 0.5), npr.uniform(-0.5, 0.5)
else:
pertube_h, pertube_w = 0, 0
h_embed = (h_embed+0.5 - h/2 + pertube_h) / (minlen) * self.twopi
w_embed = (w_embed+0.5 - w/2 + pertube_w) / (minlen) * self.twopi
h_embed, w_embed = h_embed.to(x.device).to(x.dtype), w_embed.to(x.device).to(x.dtype)
dim_t = torch.linspace(0, 1, self.freq_num, dtype=torch.float32, device=x.device)
freq_max = self.freq_max if self.freq_max is not None else minlen/2
dim_t = freq_max ** dim_t.to(x.dtype)
pos_h = h_embed[:, :, None] * dim_t
pos_w = w_embed[:, :, None] * dim_t
pos = torch.cat((pos_h.sin(), pos_h.cos(), pos_w.sin(), pos_w.cos()), dim=-1)
pos = self.mlp(pos)
pos = pos.permute(2, 0, 1)[None]
return pos
def __repr__(self, _repr_indent=4):
head = "Positional encoding " + self.__class__.__name__
body = [
"num_pos_feats: {}".format(self.num_pos_feats),
"temperature: {}".format(self.temperature),
"normalize: {}".format(self.normalize),
"scale: {}".format(self.scale),
]
# _repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)
###########
# Decoder #
###########
@register('seecoder_decoder')
class Decoder(nn.Module):
def __init__(
self,
inchannels,
trans_input_tags,
trans_num_layers,
trans_dim,
trans_nheads,
trans_dropout,
trans_feedforward_dim,):
super().__init__()
trans_inchannels = {
k: v for k, v in inchannels.items() if k in trans_input_tags}
fpn_inchannels = {
k: v for k, v in inchannels.items() if k not in trans_input_tags}
self.trans_tags = sorted(list(trans_inchannels.keys()))
self.fpn_tags = sorted(list(fpn_inchannels.keys()))
self.all_tags = sorted(list(inchannels.keys()))
if len(self.trans_tags)==0:
assert False # Not allowed
self.num_trans_lvls = len(self.trans_tags)
self.inproj_layers = nn.ModuleDict()
for tagi in self.trans_tags:
layeri = nn.Sequential(
nn.Conv2d(trans_inchannels[tagi], trans_dim, kernel_size=1),
nn.GroupNorm(32, trans_dim),)
nn.init.xavier_uniform_(layeri[0].weight, gain=1)
nn.init.constant_(layeri[0].bias, 0)
self.inproj_layers[tagi] = layeri
tlayer = DecoderLayer(
dim = trans_dim,
n_heads = trans_nheads,
dropout = trans_dropout,
feedforward_dim = trans_feedforward_dim,
activation = 'relu',)
self.transformer = DecoderLayerStacked(tlayer, trans_num_layers)
for p in self.transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
self.level_embed = nn.Parameter(torch.Tensor(len(self.trans_tags), trans_dim))
nn.init.normal_(self.level_embed)
self.lateral_layers = nn.ModuleDict()
self.output_layers = nn.ModuleDict()
for tagi in self.all_tags:
lateral_conv = Conv2d_Convenience(
inchannels[tagi], trans_dim, kernel_size=1,
bias=False, norm=nn.GroupNorm(32, trans_dim))
c2_xavier_fill(lateral_conv)
self.lateral_layers[tagi] = lateral_conv
for tagi in self.fpn_tags:
output_conv = Conv2d_Convenience(
trans_dim, trans_dim, kernel_size=3, stride=1, padding=1,
bias=False, norm=nn.GroupNorm(32, trans_dim), activation=F.relu,)
c2_xavier_fill(output_conv)
self.output_layers[tagi] = output_conv
def forward(self, features):
x = []
spatial_shapes = {}
for idx, tagi in enumerate(self.trans_tags[::-1]):
xi = features[tagi]
xi = self.inproj_layers[tagi](xi)
bs, _, h, w = xi.shape
spatial_shapes[tagi] = (h, w)
xi = xi.flatten(2).transpose(1, 2) + self.level_embed[idx].view(1, 1, -1)
x.append(xi)
x_length = [xi.shape[1] for xi in x]
x_concat = torch.cat(x, 1)
y_concat = self.transformer(x_concat)
y = torch.split(y_concat, x_length, dim=1)
out = {}
for idx, tagi in enumerate(self.trans_tags[::-1]):
h, w = spatial_shapes[tagi]
yi = y[idx].transpose(1, 2).view(bs, -1, h, w)
out[tagi] = yi
for idx, tagi in enumerate(self.all_tags[::-1]):
lconv = self.lateral_layers[tagi]
if tagi in self.trans_tags:
out[tagi] = out[tagi] + lconv(features[tagi])
tag_save = tagi
else:
oconv = self.output_layers[tagi]
h = lconv(features[tagi])
oprev = out[tag_save]
h = h + F.interpolate(oconv(oprev), size=h.shape[-2:], mode="bilinear", align_corners=False)
out[tagi] = h
return out
#####################
# Query Transformer #
#####################
@register('seecoder_query_transformer')
class QueryTransformer(nn.Module):
def __init__(self,
in_channels,
hidden_dim,
num_queries = [8, 144],
nheads = 8,
num_layers = 9,
feedforward_dim = 2048,
mask_dim = 256,
pre_norm = False,
num_feature_levels = 3,
enforce_input_project = False,
with_fea2d_pos = True):
super().__init__()
if with_fea2d_pos:
self.pe_layer = PPE_MLP(freq_num=20, freq_max=None, out_channel=hidden_dim, mlp_layer=3)
else:
self.pe_layer = None
if in_channels!=hidden_dim or enforce_input_project:
self.input_proj = nn.ModuleList()
for _ in range(num_feature_levels):
self.input_proj.append(nn.Conv2d(in_channels, hidden_dim, kernel_size=1))
c2_xavier_fill(self.input_proj[-1])
else:
self.input_proj = None
self.num_heads = nheads
self.num_layers = num_layers
self.transformer_selfatt_layers = nn.ModuleList()
self.transformer_crossatt_layers = nn.ModuleList()
self.transformer_feedforward_layers = nn.ModuleList()
for _ in range(self.num_layers):
self.transformer_selfatt_layers.append(
SelfAttentionLayer(
channels=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm, ))
self.transformer_crossatt_layers.append(
CrossAttentionLayer(
channels=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm, ))
self.transformer_feedforward_layers.append(
FeedForwardLayer(
channels=hidden_dim,
hidden_channels=feedforward_dim,
dropout=0.0,
normalize_before=pre_norm, ))
self.num_queries = num_queries
num_gq, num_lq = self.num_queries
self.init_query = nn.Embedding(num_gq+num_lq, hidden_dim)
self.query_pos_embedding = nn.Embedding(num_gq+num_lq, hidden_dim)
self.num_feature_levels = num_feature_levels
self.level_embed = nn.Embedding(num_feature_levels, hidden_dim)
def forward(self, x):
# x is a list of multi-scale feature
assert len(x) == self.num_feature_levels
fea2d = []
fea2d_pos = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
if self.pe_layer is not None:
pi = self.pe_layer(x[i], None).flatten(2)
pi = pi.transpose(1, 2)
else:
pi = None
xi = self.input_proj[i](x[i]) if self.input_proj is not None else x[i]
xi = xi.flatten(2) + self.level_embed.weight[i][None, :, None]
xi = xi.transpose(1, 2)
fea2d.append(xi)
fea2d_pos.append(pi)
bs, _, _ = fea2d[0].shape
num_gq, num_lq = self.num_queries
gquery = self.init_query.weight[:num_gq].unsqueeze(0).repeat(bs, 1, 1)
lquery = self.init_query.weight[num_gq:].unsqueeze(0).repeat(bs, 1, 1)
gquery_pos = self.query_pos_embedding.weight[:num_gq].unsqueeze(0).repeat(bs, 1, 1)
lquery_pos = self.query_pos_embedding.weight[num_gq:].unsqueeze(0).repeat(bs, 1, 1)
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
qout = self.transformer_crossatt_layers[i](
q = lquery,
kv = fea2d[level_index],
q_pos = lquery_pos,
k_pos = fea2d_pos[level_index],
mask = None,)
lquery = qout
qout = self.transformer_selfatt_layers[i](
qkv = torch.cat([gquery, lquery], dim=1),
qk_pos = torch.cat([gquery_pos, lquery_pos], dim=1),)
qout = self.transformer_feedforward_layers[i](qout)
gquery = qout[:, :num_gq]
lquery = qout[:, num_gq:]
output = torch.cat([gquery, lquery], dim=1)
return output
##################
# Main structure #
##################
@register('seecoder')
class SemanticExtractionEncoder(nn.Module):
def __init__(self,
imencoder_cfg,
imdecoder_cfg,
qtransformer_cfg):
super().__init__()
self.imencoder = get_model()(imencoder_cfg)
self.imdecoder = get_model()(imdecoder_cfg)
self.qtransformer = get_model()(qtransformer_cfg)
def forward(self, x):
fea = self.imencoder(x)
hs = {'res3' : fea['res3'],
'res4' : fea['res4'],
'res5' : fea['res5'], }
hs = self.imdecoder(hs)
hs = [hs['res3'], hs['res4'], hs['res5']]
q = self.qtransformer(hs)
return q
def encode(self, x):
return self(x)
|