Spaces:
Runtime error
Runtime error
File size: 32,574 Bytes
515f781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
import torch
import torch.nn as nn
import numpy as np
from functools import partial
from lib.model_zoo.common.get_model import register
symbol = 'clip'
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
from transformers import CLIPTokenizer, CLIPTextModel
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
@register('clip_text_context_encoder_sdv1')
class CLIPTextContextEncoderSDv1(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, freeze=True): # clip-vit-base-patch32
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
with torch.no_grad():
batch_encoding = self.tokenizer(
text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
max_token_n = self.transformer.text_model.embeddings.position_ids.shape[1]
positional_ids = torch.arange(max_token_n)[None].to(self.device)
outputs = self.transformer(
input_ids=tokens,
position_ids=positional_ids, )
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
#############################
# copyed from justin's code #
#############################
@register('clip_image_context_encoder_justin')
class CLIPImageContextEncoderJustin(AbstractEncoder):
"""
Uses the CLIP image encoder.
"""
def __init__(
self,
model='ViT-L/14',
jit=False,
device='cuda' if torch.cuda.is_available() else 'cpu',
antialias=False,
):
super().__init__()
from . import clip_justin
self.model, _ = clip_justin.load(name=model, device=device, jit=jit)
self.device = device
self.antialias = antialias
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
# I didn't call this originally, but seems like it was frozen anyway
self.freeze()
def freeze(self):
self.transformer = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def preprocess(self, x):
import kornia
# Expects inputs in the range -1, 1
x = kornia.geometry.resize(x, (224, 224),
interpolation='bicubic',align_corners=True,
antialias=self.antialias)
x = (x + 1.) / 2.
# renormalize according to clip
x = kornia.enhance.normalize(x, self.mean, self.std)
return x
def forward(self, x):
# x is assumed to be in range [-1,1]
return self.model.encode_image(self.preprocess(x)).float()
def encode(self, im):
return self(im).unsqueeze(1)
###############
# for vd next #
###############
from transformers import CLIPModel
@register('clip_text_context_encoder')
class CLIPTextContextEncoder(AbstractEncoder):
def __init__(self,
version="openai/clip-vit-large-patch14",
max_length=77,
fp16=False, ):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.model = CLIPModel.from_pretrained(version)
self.max_length = max_length
self.fp16 = fp16
self.freeze()
def get_device(self):
# A trick to get device
return self.model.text_projection.weight.device
def freeze(self):
self.model = self.model.eval()
self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def encode(self, text):
batch_encoding = self.tokenizer(
text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.get_device())
outputs = self.model.text_model(input_ids=tokens)
z = self.model.text_projection(outputs.last_hidden_state)
z_pooled = self.model.text_projection(outputs.pooler_output)
z = z / torch.norm(z_pooled.unsqueeze(1), dim=-1, keepdim=True)
return z
from transformers import CLIPProcessor
@register('clip_image_context_encoder')
class CLIPImageContextEncoder(AbstractEncoder):
def __init__(self,
version="openai/clip-vit-large-patch14",
fp16=False, ):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.processor = CLIPProcessor.from_pretrained(version)
self.model = CLIPModel.from_pretrained(version)
self.fp16 = fp16
self.freeze()
def get_device(self):
# A trick to get device
return self.model.text_projection.weight.device
def freeze(self):
self.model = self.model.eval()
self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def _encode(self, images):
if isinstance(images, torch.Tensor):
import torchvision.transforms as tvtrans
images = [tvtrans.ToPILImage()(i) for i in images]
inputs = self.processor(images=images, return_tensors="pt")
pixels = inputs['pixel_values'].half() if self.fp16 else inputs['pixel_values']
pixels = pixels.to(self.get_device())
outputs = self.model.vision_model(pixel_values=pixels)
z = outputs.last_hidden_state
z = self.model.vision_model.post_layernorm(z)
z = self.model.visual_projection(z)
z_pooled = z[:, 0:1]
z = z / torch.norm(z_pooled, dim=-1, keepdim=True)
return z
@torch.no_grad()
def _encode_wmask(self, images, masks):
assert isinstance(masks, torch.Tensor)
assert (len(masks.shape)==4) and (masks.shape[1]==1)
masks = torch.clamp(masks, 0, 1)
masked_images = images*masks
masks = masks.float()
masks = F.interpolate(masks, [224, 224], mode='bilinear')
if masks.sum() == masks.numel():
return self._encode(images)
device = images.device
dtype = images.dtype
gscale = masks.mean(axis=[1, 2, 3], keepdim=True).flatten(2)
vtoken_kernel_size = self.model.vision_model.embeddings.patch_embedding.kernel_size
vtoken_stride = self.model.vision_model.embeddings.patch_embedding.stride
mask_kernal = torch.ones([1, 1, *vtoken_kernel_size], device=device, requires_grad=False).float()
vtoken_mask = torch.nn.functional.conv2d(masks, mask_kernal, stride=vtoken_stride).flatten(2).transpose(1, 2)
vtoken_mask = vtoken_mask/np.prod(vtoken_kernel_size)
vtoken_mask = torch.concat([gscale, vtoken_mask], axis=1)
import types
def customized_embedding_forward(self, pixel_values):
batch_size = pixel_values.shape[0]
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
embeddings = embeddings*vtoken_mask.to(embeddings.dtype)
return embeddings
old_forward = self.model.vision_model.embeddings.forward
self.model.vision_model.embeddings.forward = types.MethodType(
customized_embedding_forward, self.model.vision_model.embeddings)
z = self._encode(images)
self.model.vision_model.embeddings.forward = old_forward
z = z * vtoken_mask.to(dtype)
return z
# def _encode_wmask(self, images, masks):
# assert isinstance(masks, torch.Tensor)
# assert (len(masks.shape)==4) and (masks.shape[1]==1)
# masks = torch.clamp(masks, 0, 1)
# masks = masks.float()
# masks = F.interpolate(masks, [224, 224], mode='bilinear')
# if masks.sum() == masks.numel():
# return self._encode(images)
# device = images.device
# dtype = images.dtype
# vtoken_kernel_size = self.model.vision_model.embeddings.patch_embedding.kernel_size
# vtoken_stride = self.model.vision_model.embeddings.patch_embedding.stride
# mask_kernal = torch.ones([1, 1, *vtoken_kernel_size], device=device, requires_grad=False).float()
# vtoken_mask = torch.nn.functional.conv2d(masks, mask_kernal, stride=vtoken_stride).flatten(2).transpose(1, 2)
# vtoken_mask = vtoken_mask/np.prod(vtoken_kernel_size)
# z = self._encode(images)
# z[:, 1:, :] = z[:, 1:, :] * vtoken_mask.to(dtype)
# z[:, 0, :] = 0
# return z
def encode(self, images, masks=None):
if masks is None:
return self._encode(images)
else:
return self._encode_wmask(images, masks)
@register('clip_image_context_encoder_position_agnostic')
class CLIPImageContextEncoderPA(CLIPImageContextEncoder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
import types
def customized_embedding_forward(self, pixel_values):
batch_size = pixel_values.shape[0]
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
pembeddings = self.position_embedding(self.position_ids)
pembeddings = torch.cat([
pembeddings[:, 0:1],
pembeddings[:, 1: ].mean(dim=1, keepdim=True).repeat(1, 256, 1)], dim=1)
embeddings = embeddings + pembeddings
return embeddings
self.model.vision_model.embeddings.forward = types.MethodType(
customized_embedding_forward, self.model.vision_model.embeddings)
##############
# from sd2.0 #
##############
import open_clip
import torch.nn.functional as F
@register('openclip_text_context_encoder_sdv2')
class FrozenOpenCLIPTextEmbedderSDv2(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = [
#"pooled",
"last",
"penultimate"
]
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
freeze=True, layer="last"):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
@register('openclip_text_context_encoder')
class FrozenOpenCLIPTextEmbedder(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
def __init__(self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
max_length=77,
freeze=True,):
super().__init__()
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
del model.visual
self.model = model
self.max_length = max_length
self.device = 'cpu'
if freeze:
self.freeze()
def to(self, device):
self.device = device
super().to(device)
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
self.device = self.model.ln_final.weight.device # urgly trick
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.model.transformer(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
x_pool = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.model.text_projection
# x_pool_debug = F.normalize(x_pool, dim=-1)
x = x @ self.model.text_projection
x = x / x_pool.norm(dim=1, keepdim=True).unsqueeze(1)
return x
def encode(self, text):
return self(text)
@register('openclip_image_context_encoder')
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
def __init__(self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
freeze=True,):
super().__init__()
model, _, preprocess = open_clip.create_model_and_transforms(
arch, device=torch.device('cpu'), pretrained=version)
self.model = model.visual
self.device = 'cpu'
import torchvision.transforms as tvtrans
# we only need resize & normalization
preprocess.transforms[0].size = [224, 224] # make it more precise
self.preprocess = tvtrans.Compose([
preprocess.transforms[0],
preprocess.transforms[4],])
if freeze:
self.freeze()
def to(self, device):
self.device = device
super().to(device)
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, image):
z = self.preprocess(image)
z = self.encode_with_transformer(z)
return z
def encode_with_transformer(self, image):
x = self.model.conv1(image)
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1)
x = torch.cat([
self.model.class_embedding.to(x.dtype)
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
x], dim=1)
x = x + self.model.positional_embedding.to(x.dtype)
x = self.model.ln_pre(x)
x = x.permute(1, 0, 2)
x = self.model.transformer(x)
x = x.permute(1, 0, 2)
x = self.model.ln_post(x)
if self.model.proj is not None:
x = x @ self.model.proj
x_pool = x[:, 0, :]
# x_pool_debug = self.model(image)
# x_pooln_debug = F.normalize(x_pool_debug, dim=-1)
x = x / x_pool.norm(dim=1, keepdim=True).unsqueeze(1)
return x
def _encode(self, image):
return self(image)
def _encode_wmask(self, images, masks):
z = self._encode(images)
device = z.device
vtoken_kernel_size = self.model.conv1.kernel_size
vtoken_stride = self.model.conv1.stride
mask_kernal = torch.ones([1, 1, *vtoken_kernel_size], device=device, dtype=z.dtype, requires_grad=False)
mask_kernal /= np.prod(vtoken_kernel_size)
assert isinstance(masks, torch.Tensor)
assert (len(masks.shape)==4) and (masks.shape[1]==1)
masks = torch.clamp(masks, 0, 1)
masks = F.interpolate(masks, [224, 224], mode='bilinear')
vtoken_mask = torch.nn.functional.conv2d(1-masks, mask_kernal, stride=vtoken_stride).flatten(2).transpose(1, 2)
z[:, 1:, :] = z[:, 1:, :] * vtoken_mask
z[:, 0, :] = 0
return z
def encode(self, images, masks=None):
if masks is None:
return self._encode(images)
else:
return self._encode_wmask(images, masks)
############################
# def customized tokenizer #
############################
from open_clip import SimpleTokenizer
@register('openclip_text_context_encoder_sdv2_customized_tokenizer_v1')
class FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV1(FrozenOpenCLIPTextEmbedderSDv2):
"""
Uses the OpenCLIP transformer encoder for text
"""
def __init__(self, customized_tokens, *args, **kwargs):
super().__init__(*args, **kwargs)
if isinstance(customized_tokens, str):
customized_tokens = [customized_tokens]
self.tokenizer = open_clip.SimpleTokenizer(special_tokens=customized_tokens)
self.num_regular_tokens = self.model.token_embedding.weight.shape[0]
self.embedding_dim = self.model.ln_final.weight.shape[0]
self.customized_token_embedding = nn.Embedding(
len(customized_tokens), embedding_dim=self.embedding_dim)
nn.init.normal_(self.customized_token_embedding.weight, std=0.02)
def tokenize(self, texts):
if isinstance(texts, str):
texts = [texts]
sot_token = self.tokenizer.encoder["<start_of_text>"]
eot_token = self.tokenizer.encoder["<end_of_text>"]
all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts]
maxn = self.num_regular_tokens
regular_tokens = [[ti if ti < maxn else 0 for ti in tokens] for tokens in all_tokens]
token_mask = [[0 if ti < maxn else 1 for ti in tokens] for tokens in all_tokens]
customized_tokens = [[ti-maxn if ti >= maxn else 0 for ti in tokens] for tokens in all_tokens]
return regular_tokens, customized_tokens, token_mask
def pad_to_length(self, tokens, context_length=77, eot_token=None):
result = torch.zeros(len(tokens), context_length, dtype=torch.long)
eot_token = self.tokenizer.encoder["<end_of_text>"] if eot_token is None else eot_token
for i, tokens in enumerate(tokens):
if len(tokens) > context_length:
tokens = tokens[:context_length] # Truncate
tokens[-1] = eot_token
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def forward(self, text):
self.device = self.model.ln_final.weight.device # urgly trick
regular_tokens, customized_tokens, token_mask = self.tokenize(text)
regular_tokens = self.pad_to_length(regular_tokens).to(self.device)
customized_tokens = self.pad_to_length(customized_tokens, eot_token=0).to(self.device)
token_mask = self.pad_to_length(token_mask, eot_token=0).to(self.device)
z0 = self.encode_with_transformer(regular_tokens)
z1 = self.customized_token_embedding(customized_tokens)
token_mask = token_mask[:, :, None].type(z0.dtype)
z = z0 * (1-token_mask) + z1 * token_mask
return z
@register('openclip_text_context_encoder_sdv2_customized_tokenizer_v2')
class FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV2(FrozenOpenCLIPTextEmbedderSDv2):
"""
Uses the OpenCLIP transformer encoder for text
"""
def __init__(self, customized_tokens, *args, **kwargs):
super().__init__(*args, **kwargs)
if isinstance(customized_tokens, str):
customized_tokens = [customized_tokens]
self.tokenizer = open_clip.SimpleTokenizer(special_tokens=customized_tokens)
self.num_regular_tokens = self.model.token_embedding.weight.shape[0]
self.embedding_dim = self.model.token_embedding.weight.shape[1]
self.customized_token_embedding = nn.Embedding(
len(customized_tokens), embedding_dim=self.embedding_dim)
nn.init.normal_(self.customized_token_embedding.weight, std=0.02)
def tokenize(self, texts):
if isinstance(texts, str):
texts = [texts]
sot_token = self.tokenizer.encoder["<start_of_text>"]
eot_token = self.tokenizer.encoder["<end_of_text>"]
all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts]
maxn = self.num_regular_tokens
regular_tokens = [[ti if ti < maxn else 0 for ti in tokens] for tokens in all_tokens]
token_mask = [[0 if ti < maxn else 1 for ti in tokens] for tokens in all_tokens]
customized_tokens = [[ti-maxn if ti >= maxn else 0 for ti in tokens] for tokens in all_tokens]
return regular_tokens, customized_tokens, token_mask
def pad_to_length(self, tokens, context_length=77, eot_token=None):
result = torch.zeros(len(tokens), context_length, dtype=torch.long)
eot_token = self.tokenizer.encoder["<end_of_text>"] if eot_token is None else eot_token
for i, tokens in enumerate(tokens):
if len(tokens) > context_length:
tokens = tokens[:context_length] # Truncate
tokens[-1] = eot_token
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def forward(self, text):
self.device = self.model.token_embedding.weight.device # urgly trick
regular_tokens, customized_tokens, token_mask = self.tokenize(text)
regular_tokens = self.pad_to_length(regular_tokens).to(self.device)
customized_tokens = self.pad_to_length(customized_tokens, eot_token=0).to(self.device)
token_mask = self.pad_to_length(token_mask, eot_token=0).to(self.device)
z = self.encode_with_transformer(regular_tokens, customized_tokens, token_mask)
return z
def encode_with_transformer(self, token, customized_token, token_mask):
x0 = self.model.token_embedding(token)
x1 = self.customized_token_embedding(customized_token)
token_mask = token_mask[:, :, None].type(x0.dtype)
x = x0 * (1-token_mask) + x1 * token_mask
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
class ln_freezed_temp(nn.LayerNorm):
def forward(self, x):
self.weight.requires_grad = False
self.bias.requires_grad = False
return super().forward(x)
@register('openclip_text_context_encoder_sdv2_customized_tokenizer_v3')
class FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV3(FrozenOpenCLIPEmbedderSDv2CustomizedTokenizerV2):
"""
Uses the OpenCLIP transformer encoder for text
"""
def __init__(self, customized_tokens, texpand=4, lora_rank=None, lora_bias_trainable=True, *args, **kwargs):
super().__init__(customized_tokens, *args, **kwargs)
if isinstance(customized_tokens, str):
customized_tokens = [customized_tokens]
self.texpand = texpand
self.customized_token_embedding = nn.Embedding(
len(customized_tokens)*texpand, embedding_dim=self.embedding_dim)
nn.init.normal_(self.customized_token_embedding.weight, std=0.02)
if lora_rank is not None:
from .lora import freeze_param, freeze_module, to_lora
def convert_resattnblock(module):
module.ln_1.__class__ = ln_freezed_temp
# freeze_module(module.ln_1)
module.attn = to_lora(module.attn, lora_rank, lora_bias_trainable)
module.ln_2.__class__ = ln_freezed_temp
# freeze_module(module.ln_2)
module.mlp.c_fc = to_lora(module.mlp.c_fc, lora_rank, lora_bias_trainable)
module.mlp.c_proj = to_lora(module.mlp.c_proj, lora_rank, lora_bias_trainable)
freeze_param(self.model, 'positional_embedding')
freeze_param(self.model, 'text_projection')
freeze_param(self.model, 'logit_scale')
for idx, resattnblock in enumerate(self.model.transformer.resblocks):
convert_resattnblock(resattnblock)
freeze_module(self.model.token_embedding)
self.model.ln_final.__class__ = ln_freezed_temp
# freeze_module(self.model.ln_final)
def tokenize(self, texts):
if isinstance(texts, str):
texts = [texts]
sot_token = self.tokenizer.encoder["<start_of_text>"]
eot_token = self.tokenizer.encoder["<end_of_text>"]
all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts]
maxn = self.num_regular_tokens
regular_tokens = [[[ti] if ti < maxn else [0]*self.texpand for ti in tokens] for tokens in all_tokens]
token_mask = [[[ 0] if ti < maxn else [1]*self.texpand for ti in tokens] for tokens in all_tokens]
custom_tokens = [[[ 0] if ti < maxn else [
(ti-maxn)*self.texpand+ii for ii in range(self.texpand)]
for ti in tokens] for tokens in all_tokens]
from itertools import chain
regular_tokens = [[i for i in chain(*tokens)] for tokens in regular_tokens]
token_mask = [[i for i in chain(*tokens)] for tokens in token_mask]
custom_tokens = [[i for i in chain(*tokens)] for tokens in custom_tokens]
return regular_tokens, custom_tokens, token_mask
###################
# clip expandable #
###################
@register('clip_text_sdv1_customized_embedding')
class CLIPTextSD1CE(nn.Module):
def __init__(
self,
replace_info="text|elon musk",
version="openai/clip-vit-large-patch14",
max_length=77):
super().__init__()
self.name = 'clip_text_sdv1_customized_embedding'
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.reset_replace_info(replace_info)
self.max_length = max_length
self.special_token = "<new_token>"
def reset_replace_info(self, replace_info):
rtype, rpara = replace_info.split("|")
self.replace_type = rtype
if rtype == "token_embedding":
ce_num = int(rpara)
ce_dim = self.transformer.text_model.embeddings.token_embedding.weight.size(1)
self.cembedding = nn.Embedding(ce_num, ce_dim)
self.cembedding = self.cembedding.to(self.get_device())
elif rtype == "context_embedding":
ce_num = int(rpara)
ce_dim = self.transformer.text_model.encoder.layers[-1].layer_norm2.weight.size(0)
self.cembedding = nn.Embedding(ce_num, ce_dim)
self.cembedding = self.cembedding.to(self.get_device())
else:
assert rtype=="text"
self.replace_type = "text"
self.replace_string = rpara
self.cembedding = None
def get_device(self):
return self.transformer.text_model.embeddings.token_embedding.weight.device
def position_to_mask(self, tokens, positions):
mask = torch.zeros_like(tokens)
for idxb, idxs, idxe in zip(*positions):
mask[idxb, idxs:idxe] = 1
return mask
def forward(self, text):
tokens, positions = self.tokenize(text)
mask = self.position_to_mask(tokens, positions)
max_token_n = tokens.size(1)
positional_ids = torch.arange(max_token_n)[None].to(self.get_device())
if self.replace_what == 'token_embedding':
cembeds = self.cembedding(tokens * mask)
def embedding_customized_forward(
self, input_ids=None, position_ids=None, inputs_embeds=None,):
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
inputs_embeds = inputs_embeds * (1-mask.float())[:, :, None]
inputs_embeds = inputs_embeds + cembeds
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
import types
self.transformer.text_model.embeddings.forward = types.MethodType(
embedding_customized_forward, self.transformer.text_model.embeddings)
else:
# TODO: Implement
assert False
outputs = self.transformer(
input_ids=tokens,
position_ids=positional_ids, )
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
@torch.no_grad()
def tokenize(self, text):
if isinstance(text, str):
text = [text]
bos_special_text = "<|startoftext|>"
text = [ti.replace(self.special_token, bos_special_text) for ti in text]
batch_encoding = self.tokenizer(
text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"]
bosid = tokens[0, 0]
eosid = tokens[0, -1]
bs, maxn = tokens.shape
if self.replace_what in ['token_embedding', 'context_embedding']:
newtokens = []
ce_num = self.cembedding.weight.size(0)
idxi = []; idxstart = []; idxend = [];
for idxii, tokeni in enumerate(tokens):
newtokeni = []
idxjj = 0
for ii, tokenii in enumerate(tokeni):
if (tokenii == bosid) and (ii != 0):
newtokeni.extend([i for i in range(ce_num)])
idxi.append(idxii); idxstart.append(idxjj);
idxjj += ce_num
idxjj_record = idxjj if idxjj<=maxn-1 else maxn-1
idxend.append(idxjj_record);
else:
newtokeni.extend([tokenii])
idxjj += 1
newtokeni = newtokeni[:maxn]
newtokeni[-1] = eosid
newtokens.append(newtokeni)
return torch.LongTensor(newtokens).to(self.get_device()), (idxi, idxstart, idxend)
else:
# TODO: Implement
assert False
|