shellypeng commited on
Commit
de7859c
·
1 Parent(s): 5b9202b

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -158
app.py DELETED
@@ -1,158 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- from PIL import Image
4
- from transformers import pipeline
5
- from diffusers import StableDiffusionDepth2ImgPipeline, StableDiffusionPipeline, StableDiffusionControlNetPipeline, StableDiffusionUpscalePipeline, StableDiffusionImg2ImgPipeline, AutoPipelineForImage2Image
6
- from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, DPMSolverMultistepScheduler
7
-
8
- import torch
9
- from controlnet_aux import HEDdetector
10
- from diffusers.utils import load_image
11
- from huggingface_hub import notebook_login, login
12
- import concurrent.futures
13
- from threading import Thread
14
-
15
- hidden_booster_text = "beautiful face, beautiful hand, small boobs, a cup"
16
- hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense"
17
-
18
- hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
19
-
20
- controlnet_scribble = ControlNetModel.from_pretrained(
21
- "lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16
22
- )
23
-
24
- pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
25
- "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble,
26
- torch_dtype=torch.float16,
27
- )
28
-
29
- pipe_scribble.load_textual_inversion("shellypeng/bad-prompt")
30
- pipe_scribble.load_textual_inversion("shellypeng/badhandv4")
31
- # pipe.load_textual_inversion("shellypeng/easynegative")
32
- pipe_scribble.load_textual_inversion("shellypeng/deepnegative")
33
- pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative")
34
- pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
35
- # pipe.enable_model_cpu_offload()
36
- def dummy(images, **kwargs):
37
- return images, False
38
- pipe_scribble.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
39
- pipe_scribble.to("cuda")
40
-
41
- def scribble_to_image(text, input_img):
42
- """
43
- pass the sd model and do scribble to image
44
- include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
45
- expression to improve hand)
46
- """
47
- # change param "bag" below to text, image param below to input_img
48
- input_img = Image.fromarray(input_img)
49
- input_img = hed(input_img, scribble=True)
50
- input_img = load_image(input_img)
51
- # global prompt
52
- prompt = text + hidden_booster_text
53
- res_image0 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
54
- res_image1 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
55
- res_image2 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
56
- res_image3 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
57
-
58
- return res_image0, res_image1, res_image2, res_image3
59
-
60
- theme = gr.themes.Soft(
61
- primary_hue="orange",
62
- secondary_hue="orange",
63
- ).set(
64
- block_background_fill='*primary_50'
65
- )
66
-
67
- pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
68
- torch_dtype=torch.float16)
69
- pipe_img2img.load_lora_weights("shellypeng/detail-tweaker")
70
- pipe_img2img.fuse_lora(lora_scale=0.1)
71
- pipe_img2img.load_textual_inversion("shellypeng/bad-prompt")
72
- pipe_img2img.load_textual_inversion("shellypeng/badhandv4")
73
- # pipe.load_textual_inversion("shellypeng/easynegative")
74
- pipe_img2img.load_textual_inversion("shellypeng/deepnegative")
75
- pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative")
76
- pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
77
- # pipe.enable_model_cpu_offload()
78
- def dummy(images, **kwargs):
79
- return images, False
80
- pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
81
- pipe_img2img = pipe_img2img.to("cuda")
82
-
83
- def real_img2img_to_anime(text, input_img):
84
- """
85
- pass the sd model and do scribble to image
86
- include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
87
- expression to improve hand)
88
- """
89
- input_img = Image.fromarray(input_img)
90
- input_img = load_image(input_img)
91
- prompt = text + hidden_booster_text
92
- # input_img = depth_estimator(input_img)['depth']
93
- res_image0 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
94
- res_image1 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
95
- res_image2 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
96
- res_image3 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
97
-
98
- return res_image0, res_image1, res_image2, res_image3
99
-
100
-
101
- theme = gr.themes.Soft(
102
- primary_hue="orange",
103
- secondary_hue="orange",
104
- ).set(
105
- block_background_fill='*primary_50'
106
- )
107
-
108
-
109
- generator = torch.manual_seed(33)
110
-
111
- with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
112
- with gr.Tab("Animefier"):
113
- with gr.Row(equal_height=True):
114
- with gr.Column():
115
- prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt")
116
- image_box = gr.Image(label="Input Image", height=350)
117
- gen_btn = gr.Button(value="Generate")
118
- with gr.Row(equal_height=True):
119
- global image1
120
- global image2
121
- global image3
122
- global image4
123
- image1 = gr.Image()
124
- image2 = gr.Image()
125
- image3 = gr.Image()
126
- image4 = gr.Image()
127
-
128
- def mult_thread(prompt_box, image_box):
129
- with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
130
- future = executor.submit(real_img2img_to_anime, prompt_box, image_box)
131
- image1, image2, image3, image4 = future.result()
132
- return image1, image2, image3, image4
133
-
134
- gen_btn.click(mult_thread, [prompt_box, image_box], [image1, image2, image3, image4])
135
- with gr.Tab("AniSketch"):
136
- with gr.Row(equal_height=True):
137
- with gr.Column():
138
- prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt")
139
- image_box = gr.Image(label="Input Image", height=350)
140
- gen_btn = gr.Button(value="Generate")
141
- with gr.Row(equal_height=True):
142
- image1 = gr.Image()
143
- image2 = gr.Image()
144
- image3 = gr.Image()
145
- image4 = gr.Image()
146
-
147
- def mult_thread(prompt_box, image_box):
148
- with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
149
- future = executor.submit(scribble_to_image, prompt_box, image_box)
150
- image1, image2, image3, image4 = future.result()
151
- return image1, image2, image3, image4
152
-
153
- gen_btn.click(mult_thread, [prompt_box, image_box], [image1, image2, image3, image4])
154
-
155
- iface.launch(inline=False)
156
-
157
-
158
-